首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Detailed microscopy of two crept aluminas, one with (AD99) and one without (Lucalox) a grain boundary glassy phase, has been performed to determine the pertinent damage mechanisms during creep. Evidence is presented for a nucleation-controlled cavitation process where creep cavities nucleate primarily on two-grain facets, followed by cavity growth and coalescence to form grain-facet-sized cavities and microcracks. A variety of creep cavity morphologies were observed in Lucalox, including spheroidal and irregularly shaped cavities. The latter finding implies a strong influence of crystallographic orientation and the corresponding surface energy of the cavitated planes on the cavity shape. In contrast, classical spheroidal cavities were observed in AD99 due to the presence of a viscous phase along grain boundaries. Direct evidence for grain boundary sliding as the process driving force for cavitation in Lucalox is presented together with evidence for the nucleation of creep cavities at grain boundary ledges. These findings are compared to the grain boundary sliding (GBS) and small-angle neutron scattering (SANS) measurements performed previously on the same systems. Based on this study, the cavity nucleation process in the glassy-phase- and non-glassy-phase-containing aluminas is apparently similar as both involve the nucleation of rows of equally sized and equally spaced cavities.  相似文献   

2.
A study has been carried out to examine the effect of LaB6 addition on the compressive creep behavior of ZrB2-SiC composites at 1300–1400°C under stresses between 47 and 78 MPa in laboratory air. The ZrB2-20 vol% SiC composites containing LaB6 (10% in ZSBCL-10 and 14% in ZSBCL-14) besides 5.6% B4C and 4.8% C as additives were prepared by spark plasma sintering at 1600°C. Due to cleaner interfaces and superior oxidation resistance, the ZSBCL-14 composite has exhibited a lower steady-state creep rate at 1300°C than the ZSBCL-10. The obtained stress exponent (n ∼ 2 ± 0.1) along with cracking at ZrB2 grain boundaries and ZrB2-SiC interfaces are considered evidence of grain boundary sliding during creep of the ZSBCL-10 composite. However, the values of n ∼ 1 and apparent activation energy ∼700 kJ/mol obtained for the ZSBCL-14 composite at 1300–1400°C suggest that ZrB2 grain boundary diffusion is the rate-limiting mechanism of creep. The thickness of the damaged outer layer containing cracks scales with temperature and applied stress, indicating their role in facilitating the ingress of oxygen causing oxide scale growth. Decreasing oxidation-induced defect density with depth to a limit of ∼280 μm, indicates the predominance of creep-based deformation and damage at the inner core of samples.  相似文献   

3.
Interaction between grain boundaries and impurities usually leads to significant altering of material properties. Understanding the composition-structure-property relationship of grain boundaries is a key avenue for tailoring and designing high performance materials. In this work, we studied segregation of W into ZrB2 grain boundaries by a hybrid method combining Monte Carlo (MC) and molecular dynamics (MD), and examined the effects of segregation on grain boundary strengths by MD tensile testing with a fitted machine learning potential. It is found that W prefers grain boundary sites with local compression strains due to its smaller size compared to Zr. Rich segregation patterns (including monolayer, off-center bilayer, and other complex patterns); segregation induced grain boundary structure reconstruction; and order-disorder like segregation pattern transformation are discovered. Strong segregation tendency of W into ZrB2 grain boundaries and significant improvements on grain boundary strengths are certified, which guarantees outstanding high temperature performance of ZrB2-based UHTCs.  相似文献   

4.
In this study, we report the grain boundary driven mechanical behavior of 2 polycrystalline ultra‐high‐temperature ceramics (UHTCs), zirconium diboride (ZrB2) and zirconium carbide (ZrC) with zirconium diboride (ZrC‐ZrB2). These nanocomposites were investigated using large‐scale molecular dynamics simulations. First, the atomistic models of the polycrystalline ZrB2 and ZrC‐ZrB2 nanocomposites were subjected to tensile loading to determine their elastic constants and tensile strengths. It was found that the presence of nanoparticles imparts an insignificant effect on the mechanical properties of ZrB2. It has also been observed that the failure mechanisms of both the ZrB2 and ZrC‐ZrB2 nanocomposite are driven by grain boundary deformation. At any instant during the applied load transfer, local tensile stress distribution data indicate that atomic stress becomes much higher near the grain boundaries compared to other locations. The authors performed additional sets of simulations to obtain tensile and shear properties of grain boundary material. When these properties were compared with the adjacent single crystal and overall polycrystalline material properties, it was found that the shear strength and stiffness of the grain boundary materials are significantly lower than the single crystal or polycrystal ZrB2. It is believed that the overall deformation and failure properties of ZrB2 and its composite are controlled by the properties of grain boundary. Hence, the addition of nanoparticles played an insignificant role on the mechanical properties of ZrB2.  相似文献   

5.
Compressive creep studies have been carried out on hot‐pressed ZrB2–SiC (ZS) and ZrB2–SiC–Si3N4 (ZSS) composites in air under stress and temperature ranges of 93–140 MPa and 1300°C–1425°C, respectively for time durations of ≈20–40 h. The results of these studies have shown the creep resistance of ZS composite to be greater than that of ZSS. As the temperature is increased from 1300°C to 1425°C, the stress exponent of ZS decreases from 1.7 to 1.1, whereas that of ZSS drops from 1.6 to 0.6. The activation energies for these composites have been found as ≈95 ± 32 kJ/mol at temperatures ≤1350°C, and as ≈470 ± 20 kJ/mol in the range of 1350°C–1425°C. Studies of the postcreep microstructures using scanning and transmission electron microscopy have shown the presence of glassy film with cracks at both ZrB2 grain boundaries and ZrB2–SiC interfaces. These results along with calculated values of activation volumes suggest grain‐boundary sliding as the major damage mechanism, which is controlled by O2? diffusion through SiO2 at ≤1350°C, and by viscoplastic flow of the glassy interfacial film at temperatures ≥1350°C. Studies by transmission electron microscopy have shown formation of crystalline precipitates of Si2N2O near ZrB2–SiC interfaces in ZSS tested at ≥1400°C, which along with stress exponent values <1 suggests that grain‐boundary sliding involving solution‐precipitation‐type mechanism is operative at these temperatures.  相似文献   

6.
Compared with monolithic fine grained Al2O3, Al2O3 nanocomposites reinforced with SiC nanoparticles display especially high modulus of rupture as well as reduced creep strain. Taking into account the fracture mode change, the morphology of ground surfaces showing plastic grooving, the low sensitivity to wear and the low dependence of erosion rate with grain size, it can be reasonably assumed that the strength improvement is associated with an increase of the interface cohesion (due to bridging by SiC particles) rather than with a grain size refinement involving substructure formation (as initially suggested by Niihara). In the present work, creep tests have been performed and the results agree with such a reinforcement of the mechanical properties by SiC particle bridging Al2O3–Al2O3 grain boundaries. Indeed, particles pinning the grain boundaries hinder grain boundary sliding resulting in a large improvement in creep resistance. In addition, SiC particles, while counteracting sliding, give rise to a recoverable viscoelastic contribution to creep. Because of the increased interface strength, the samples undergoing creep support stress levels, greater than the threshold value required to activate dislocation motion. The high stress exponent value as well as the presence of a high dislocation density in the strained materials suggests that a lattice mechanism controls the deformation process. Finally, a model is proposed which fits well with the experimental creep results.  相似文献   

7.
Dense ZrB2–SiC composite was synthesized by spark plasma sintering with 10 vol.% TaSi2 additive. When sintered at 1600 °C, core–shell structure was found existing in the sample. The core was ZrB2 and the shell was (Zr,Ta)B2 solid solution. This result was ascribed to the decomposition of TaSi2 and the solid solution of Ta atoms into ZrB2 grains. The solid solution process probably decreased the boride grain boundary active energy, contributing to the formation of coherent structure of grain boundaries. Additionally, the existence of dislocations in the boride grains indicated that the applied pressure also imposed an important effect on the densification of composite. When sintered at 1800 °C, owing to the atom diffusion, Ta atoms homogeneously distributed in the boride grains, leading to the disappearance of core–shell structure. The boundaries between (Zr,Ta)B2 grains, as well as between boride grains and SiC particles, were still clear without amorphous phase existing.  相似文献   

8.
The creep deformation of the ultra-high temperature ceramic composite ZrB2–20%SiC at temperatures from 1400 to 1700 °C was studied by a micromechanical mode in which the real microstructure was adopted in finite element simulations. Based on the experiment results of the change of activation energy with respect to the temperature, a mechanism shift from diffusional creep-control for temperatures below 1500 °C to grain boundary sliding-control for temperatures above 1500 °C was concluded from simulations. Also, the simulation results revealed the accommodation of grain rotation and grain boundary sliding by grain boundary cavitation for creep at temperatures above 1500 °C which was in agreement with experimental observations.  相似文献   

9.
Creep experiments performed on a 5 wt.% zirconia- MgAl2O4 spinel material, in the stress and temperature ranges 8–200 MPa and 1350–1410°C, have shown the importance of grain boundaries in deformation of this material. Deformation can be analysed as the result of two sequential contributions. At low stress, an increase in the apparent stress exponent and the occurrence of a threshold stress, whose value roughly varies inversely proportional to spinel grain size, were observed. At high stress, grain boundary diffusion is the most likely mechanism that controls the grain boundary sliding. These observations are consistent with previous experiments showing that sliding of spinel/spinel boundaries is more difficult than sliding of spinel/zirconia boundaries in the low stress range. The plastic flow is analysed by means of grain boundary dislocations whose density increases with stress. At low stress, when the density of boundary dislocations is low, creep rates are interface-controlled while at high stress, when the boundary dislocation density is large, rates are limited by the long-range diffusion process.  相似文献   

10.
Spherical instrumented scratch behavior of ZrB2-SiC composites with and without hybrid boron nitride nanotubes (BNNTs) and boron nitride nanoplatelets (BNNPs) was investigated in this research. Typical brittle fracture such as microcracks both in and beyond the residual groove and grain dislodgement was observed in ZrB2-SiC composite, while hybrid BN nanofiller reinforced ZrB2-SiC composite exhibited predominantly ductile deformation. The peculiar three-dimensional hybrid structure in which BNNPs retain their high specific surface area and de-bundled BNNTs extend as tentacles contributes to the improved tolerance to brittle damage. Additionally, easier grain sliding due to BN hybrid nanofillers located at grain boundaries and these BN hybrid nanofillers attached on the scratch surface would provide significant self-lubricating effect to reduce lateral force during scratch and to alleviate contact damage.  相似文献   

11.
This paper reviews investigations of silicon nitride–silicon carbide micro–nanocomposites from the original work of Niihara, who proposed the concept of structural ceramic nanocomposites, to more recent work on strength and creep resistance of these unique materials. Various different raw materials are described that lead to the formation of nanosized SiC within the Si3N4 grains (intragranular) and at grain boundaries (intergranular). The latter exert a pinning effect on the amorphous grain boundary phases in the silicon nitride and also act as nucleation sites for β-Si3N4, which limits grain growth during sintering. This finer microstructure results in strengths higher than for the monolithic silicon nitride. Intragranular SiC particles enhance strength and fracture toughness as a result of residual compressive thermal stresses within the nanocomposites. High temperature strength and creep resistance are also much higher than for monolithic silicon nitride and a few investigations of these topics are briefly reviewed and the proposed mechanisms are described. Within the context of other studies cited, work on Si3N4–SiC micro–nanocomposites by the current authors describes an aqueous processing route for better dispersion of commercial powders prior to sintering.  相似文献   

12.
A comparative study has been carried out on densification, microstructure, and creep with oxide-scale formation in ZrB2-20 vol.% SiC-(7, 10 or 14 vol.%) LaB6 composite containing B4C and C as additives, and prepared by spark plasma sintering at 1800 °C under 70 MPa ram pressure. Addition of LaB6 has promoted densification of composites by scavenging oxygen impurity, thereby increasing their hardness. Constant load compressive creep tests at 1300 °C under 47 and 78 MPa stresses have shown the lowest creep rate in the 10 vol.% LaB6 composite. The stress exponents obtained for composites having 10 vol.% LaB6 (~1.3 ± 0.1) and 14 vol.% LaB6 (~2.6 ± 0.2) suggest respectively, grain boundary diffusion with intergranular glassy phase formation and dislocation glide as operating mechanisms. Intergranular cracking caused by grain boundary sliding appears as the damage mechanism. Oxide scales formed during creep exhibit greater thickness and defect concentration than those by isothermal exposure at 1300 °C within similar duration.  相似文献   

13.
A study of the flexural creep response of aluminas reinforced with 10 vol% SiC whiskers was conducted at 1200° and 1300°C at stresses from 50 to 230 MPa in air to evaluate the effect of matrix grain size. The average matrix grain size was varied from 1.2 to 8.0 μm by controlling the hot-pressing conditions. At 1200°C, the creep resistance of alumina composites increases with an increase in matrix grain size, and the creep rate (at constant applied stress) exhibits a grain size exponent of approximately 1. The stress exponent of the creep rate at 1200°C is approximately 2, consistent with a grain boundary sliding mechanism. On the other hand, the creep deformation rate of 1300°C was not sensitive to the alumina grain size. This was seen to be a result of enhanced nucleation and coalescence of creep cavities and the development of macroscopic cracks as the grain size increases. Observations also indicated that the prevalent site for nucleation and growth of creep cavities in coarsegrained materials is at two-grain junctions (grain faces), whereas in fine-grained materials cavities nucleate primarily at triple-grain junctions (grain edges). Electron microscopy studies revealed that the content of any amorphous phase present at whisker-alumina interfaces is independent of alumina grain size (and hot-pressing conditions). In addition, the alumina grain boundaries are quite devoid of amorphous phase(s). This variation in amorphous phase content does not appear to be a factor in the present creep results.  相似文献   

14.
This study focuses on interfacial bonding between intergranular silicon carbide particles and an alumina matrix, to determine the creep inhibition mechanism of alumina/ silicon carbide nanocomposites. It is revealed that the silicon carbide/alumina interface possesses much stronger bonding than the alumina/alumina interface through three approaches: investigation of fracture toughness and fracture mode and consideration of internal thermal stresses acting at grain boundaries, estimation of equilibrium thickness of intergranular glassy films by force balance, and direct observation of grain boundaries by TEM. The rigid bonding of alumina/silicon carbide interfaces causes inhibition of vacancy nucleation and annihilation at the interfaces, causing remarkably improved creep resistance of the nanocomposite.  相似文献   

15.
Flexural creep studies of ZrB2–20 vol% SiC ultra-high temperature ceramic were conducted over the range of 1400–1820 °C in an argon shielded testing apparatus. A two decade increase in creep rate, between 1500 and 1600 °C, suggests a clear transition between two distinct creep mechanisms. Low temperature deformation (1400–1500 °C) is dominated by ZrB2 grain or ZrB2–SiC interphase boundary and ZrB2 lattice diffusion having an activation energy of 364 ± 93 kJ/mol and a stress exponent of unity. At high temperatures (>1600 °C) the rate-controlling processes include ZrB2–ZrB2 and/or ZrB2–SiC boundary sliding with an activation energy of 639 ± 1 kJ/mol and stress exponents of 1.7 < n < 2.2. In addition, cavitation is found in all specimens above 1600 °C where strain-rate contributions agree with a stress exponent of n = 2.2. Microstructure observations show cavitation may partially accommodate grain boundary sliding, but of most significance, we find evidence of approximately 5% contribution to the accumulated creep strain.  相似文献   

16.
Diffusional creep and cavitation in pure alumina prepared with three different fabrication processes are compared under tension and subsequent hydrostatic compression. The deformation rates are separated into a volume-conserving creep rate and cavitational rate by measuring the longitudinal and transverse strains intermittently during deformation. Concurrent grain growth causes the volume-conserving strain rate to decrease in a manner consistent with Nabarro-Herring creep. The creep stress index of n = 1.3 and the average activation energy of Q = 480 kJ/mol are also consistent with Nabarro-Herring creep controlled by aluminum lattice diffusion. Anelastic loading and unloading transients are also identified and separated from the creep strains. High-voltage electron microscopy indicates that cavities nucleate at grain edges early and continuously in the creep process. The surfaces of these cavities tend after some growth to exhibit negligible curvature and various dihedral angles. The activation energy of Q = 450 kJ/mol and stress dependence of the cavitation rate of n = 1.3 are consistent with a grain boundary diffusional growth mechanism. The loading mode is found to have no significant effect on the cavitation rate during tensile creep and the subsequent decavitation rate during hydrostatic compression. The cavitation and decavitation rates are in good agreement with the model proposed by Speight and Beere when the effects of grain growth on cavity accumulation on grain boundaries are included. Exaggerated grain growth in high-density specimens can lead to early cavity coalescence and failure.  相似文献   

17.
《Ceramics International》2017,43(5):4372-4378
A simple method for introducing ZrB2 using sol-gel processing into a SiBCN matrix is presented in this paper. Zirconium n-propoxide (ZNP), boric acid and furfuryl alcohol (C5H6O2) (FA) were added as the precursors of zirconia, boron oxide and carbon forming ZrB2 dispersed in a SiBCN matrix. SiBCN/ZrB2 composites with different contents of ZrB2 (5, 10, 15, and 20 wt%) were formed at 2000 °C for 5 min by spark plasma sintering (SPS). The microstructures were carefully studied. TEM analysis showed that the as formed ZrB2 grains were typically 100–500 nm in size and had uniform distribution. HRTEM revealed clean grain boundaries between ZrB2 and SiC, however, a separation of C near the SiC boundary was observed. The flexural strength, fracture toughness, Young's modulus and Vicker's hardness of composites all improved with the ZrB2 contents and SiBCN matrix containing 20 wt% of ZrB2 could reach 351±18 MPa, 4.5±0.2 MPa m1/2, 172±8 GPa and 7.2±0.2 GPa, respectively. The improvement in fracture toughness can be attributed to the tortuous crack paths due to the presence of reinforcing particles.  相似文献   

18.
The microstructures of as-sintered and creep tested polycrystalline mullite and mullite reinforced with 5 vol.% nano-sized SiC particles have been characterized by scanning and transmission electron microscopy. The dislocation densities after tensile creep testing at 1300 and 1400 °C were virtually unchanged as compared to the as-sintered materials which indicates diffusion-controlled deformation. Mullite matrix grain boundaries bending around intergranular SiC particles suggest that grain boundary pinning, in addition to a reduced mullite grain size, contributed to the increased creep resistance of the mullite/5 vol.% SiC nanocomposite. Both materials showed pronounced cavitation at multi-grain junctions after creep testing at 1400 °C which suggests that unaccommodated grain boundary sliding, facilitated by softening of the intergranular glass, occurred at this temperature. This is consistent with the higher stress exponents at 1400 °C.  相似文献   

19.
The stress-strain state of ZrB2-SiC ultra-high-temperature ceramics, produced using commercial powders with different impurity levels, was investigated by X-ray diffraction. Upon analysis of ZrB2 and SiC diffraction lines shift, the level of thermal stresses (strains) of the different phases was determined. An increase of internal stresses in ceramics with rising viscous-brittle transition temperatures, Tve, was attributed to increased grain boundary strength. Ceramics, for which high Tve and high level of internal stresses were estimated, exhibited high strength, up to 700 MPa at 1400 °C. A field of compressive thermal stresses in the matrix phase resulted to be necessary for achieving high strength at low-temperatures. On the contrary, the presence of low-melting impurities at the grain boundaries negatively impacted on the stress level in ZrB2 boundaries in the high temperature regime.  相似文献   

20.
With combination of a powder processing technique and a sol-gel process, carbon nanotube/titanium carbide coated zirconium diboride matrix composite was fabricated. Zirconium diboride (ZrB2) powders were coated with a functionalized carbon nanotubes (CNTs) mixed titanium carbide (TiC) sol-gel precursor. As the results suggests, the carbothermal reduction produced nanosized TiC grains at the surface of the ZrB2 particles with a homogenous distribution of CNTs. The densification of the CNT/TiC coated ZrB2 matrix composite was achieved via 1900?°C spark plasma sintering(SPS). The TiC grains and the CNTs were primarily concentrated in the grain boundaries of the ZrB2 and showed the pinning effects that restrained the growth of ZrB2 grain. The TiC grain diffusion in the sintering coarsened the grains from nanosizes to 1–2?µm, which improved the densification of the ZrB2. Due to the difference in coefficient of thermal expansion, CNTs bridged the gaps between the TiC and the ZrB2 matrix, which formed a weak-bonding interface. The major toughening mechanism found was crack deflection via the TiC grains on the ZrB2 matrix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号