首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A Volume Integral Equation Method (VIEM) is introduced for the solution of elastostatic problems in an unbounded isotropic elastic solid containing interacting multiple isotropic and anisotropic circular/elliptical inclusions subject to remote antiplane shear. This method is applied to two-dimensional problems involving long parallel cylindrical inclusions. A detailed analysis of the stress field at the interface between the matrix and the central inclusion is carried out for square and hexagonal packing of isotropic and anisotropic inclusions. The effects of the number of isotropic and anisotropic inclusions and various fiber volume fractions on the stress field at the interface between the matrix and the central circular/elliptical inclusion are also investigated in detail. The accuracy of the method is validated by solving single isotropic and orthotropic circular/elliptical inclusion problems and multiple isotropic circular and elliptical inclusion problems for which solutions are available in the literature.  相似文献   

2.
This paper presents a boundary element analysis of elliptical cracks in two joined transversely isotropic solids. The boundary element method is developed by incorporating the fundamental singular solution for a concentrated point load in a transversely isotropic bi-material solid of infinite space into the conventional displacement boundary integral equations. The multi-region method is used to analyze the crack problems. The traction-singular elements are employed to capture the singularity around the crack front. The values of stress intensity factors (SIFs) are obtained by using crack opening displacements. The results of the proposed method compare well with the existing exact solutions for an elliptical crack parallel to the isotropic plane of a transversely isotropic solid of infinite extent. Elliptical cracks perpendicular to the interface of transversely isotropic bi-material solids of either infinite extent or occupying a cubic region are further examined in detail. The crack surfaces are subject to the uniform normal tractions. The stress intensity factor values of the elliptical cracks of the two types are analyzed and compared. Numerical results have shown that the stress intensity factors are strongly affected by the anisotropy and the combination of the two joined solids.  相似文献   

3.
A volume integral equation method (VIEM) is used to calculate the elastostatic field in an isotropic elastic half-plane containing circular inclusions subject to remote loading parallel to the traction-free boundary. The material of the inclusions may be either isotropic or anisotropic and they are assumed to be distributed in square or hexagonal array. A detailed analysis of the stress field at the interface between the matrix and one of the inclusions is carried out for different distances between the inclusion and the surface of the half-plane. The results of the calculations are compared with available results. The VIEM is shown to be very accurate and effective for investigating the local stresses in the presence of multiple inclusions. The method can be applied to multiple inclusions of arbitrary geometry and elastic properties embedded in extended isotropic elastic media.  相似文献   

4.
In this paper, distributions of stress and strain components of rotating disks with non-uniform thickness and material properties subjected to thermo-elastic loading under different boundary conditions are obtained by semi-exact methods of Liao’s homotopy analysis method (HAM), Adomian’s decomposition method and He’s variational iteration method (VIM). The materials are assumed to be perfectly elastic and isotropic. A two dimensional plane stress analysis is used. The distribution of temperature over the disk radius is assumed to have power forms with the higher temperature at the outer surface.  相似文献   

5.
A method is proposed for the approximate evaluation of normal displacements and normal stresses on the plane of two coplanar cracks located inside an infinite isotropic elastic solid and subjected to normal internal pressure. The formulation results in a single integral equation for the unknown normal stresses on the plane of the cracks. Numerical results are given for the stress intensity factor KI of two coplanar circular cracks and two coplanar elliptical cracks opened up under a uniform internal pressure.  相似文献   

6.
In this article a new method for topological optimization of fundamental frequencies of elastic bodies, which could be considered as an improvement on the bubble method, is introduced. The method is based on generalized topological derivatives. For a body with different types of inclusion the vector genus is introduced. The dimension of the genus is the number of different elastic properties of the inclusions being introduced. The disturbances of stress and strain fields in an elastic matrix due to a newly inserted elastic inhomogeneity are given explicitly in terms of the stresses and strains in the initial body. The iterative positioning of inclusions is carried out by determination of the preferable position of the new inhomogeneity at the extreme points of the characteristic function. The characteristic function was derived using Eshelby's method. The expressions for optimal ratios of the semi-axes of the ellipse and angular orientation of newly inserted infinitesimally small inclusions of elliptical form are derived in closed analytical form.  相似文献   

7.
对于硬夹杂与软基体的复合材料,考虑夹杂间的相互影响,采用坐标变换和复变函数的依次保角映射方法,构造任意分布且相互影响的多个椭圆形刚性夹杂模型的复应力函数,同时满足各个夹杂的边界条件,利用围线积分将求解方程化为线性代数方程,推导出了在无穷远双向均匀剪切,椭圆形刚性夹杂任意分布的界面应力解析表达式,算例分析给出了单夹杂模型与多夹杂模型的夹杂形状对界面应力最大值的影响规律,并进行了对比,描绘出了曲线.  相似文献   

8.
A direct boundary integral method in the time domain is presented to solve the problem of an infinite, isotropic Boltzmann viscoelastic plane containing a large number of randomly distributed, non-overlapping circular holes and perfectly bonded elastic inclusions. The holes and inclusions are of arbitrary size and the elastic properties of all of the inclusions can, in general, be different. The method is based on a direct boundary integral approach for the problem of an infinite elastic plane containing multiple circular holes and elastic inclusions described by Crouch and Mogilevskaya [1], and a time marching strategy for viscoelastic analysis described by Mesquita and Coda [2–8]. Benchmark problems and numerical examples are included to demonstrate the accuracy and efficiency of the method.  相似文献   

9.
This paper considers the problem of an infinite, isotropic viscoelastic plane containing an arbitrary number of randomly distributed, non-overlapping circular holes and isotropic elastic inclusions. The holes and inclusions are of arbitrary size. All inclusions are assumed to be perfectly bonded to the material matrix but the elastic properties of the inclusions can be different from one another. The Kelvin model is employed to simulate the viscoelastic plane. The numerical approach combines a direct boundary integral method for a similar problem of an infinite elastic plane containing multiple circular holes and elastic inclusions described in [Crouch SL, Mogilevskaya SG. On the use of Somigliana's formula and Fourier series for elasticity problems with circular boundaries. Int J Numer Methods Eng 2003;58:537–578], and a time-marching strategy for viscoelastic material analysis described in [Mesquita AD, Coda HB, Boundary integral equation method for general viscoelastic analysis. Int J Solids Struct 2002;39:2643–2664]. Several numerical examples are given to verify the approach. For benchmark problems with one inclusion, results are compared with the analytical solution obtained using the correspondence principle and analytical Laplace transform inversion. For an example with two holes and two inclusions, results are compared with numerical solutions obtained by commercial finite element software—ANSYS. Benchmark results for a more complicated example with 25 inclusions are also given.  相似文献   

10.
A mixed volume and boundary integral equation method is used to calculate the plane elastostatic field in an isotropic elastic half-plane containing an isotropic or anisotropic inclusion and a void subject to remote loading parallel to a traction-free boundary. A detailed analysis of the stress field is carried out for three different geometries of the problem. It is demonstrated that the method is very accurate and effective for investigating local stresses in an isotropic elastic half-plane containing multiple isotropic or anisotropic inclusions and multiple voids.  相似文献   

11.
This paper deals with an interaction problem of arbitrarily distributed elliptical inclusions under longitudinal shear loading. The problem is formulated as a system of singular integral equations with Cauchy-type or logarithmic-type singularities, where unknown functions are the densities of body forces distributed in the longitudinal directions of infinite bodies having the same elastic constants as those of the matrix and inclusions. In order to satisfy the boundary conditions along the elliptical inclusions, four kinds of fundamental density functions are introduced in a similar way of previous papers treating plane stress problems. Then the body force densities are approximated by a linear combination of those fundamental density functions and polynomials. In the analysis, elastic constants of matrix and inclusion are varied systematically; then the magnitude and position of the maximum stress are shown in tables and the stress distributions along the boundary are shown in figures. For any fixed shape, size and elastic constant of inclusions, the relationships between number of inclusions and maximum stress are investigated for several arrangements.  相似文献   

12.
该文提出了一种求解含固体、流体和孔隙等多类型夹杂的混合夹杂问题的边界元法。混合夹杂问题实质也是多连通域问题,但内边界的位移和面力都是未知量,导致该问题因定解条件不足而无法直接求解。根据不同类型夹杂的本构关系建立了各夹杂与基体界面面力与位移之间的关联矩阵,从而形成除给定边界条件以外的补充定解条件,使问题得以解决。以平面问题为例,分别对只含固体夹杂、流体夹杂以及同时含有孔隙、固体和流体夹杂的情况进行了计算,模拟了含100个随机分布夹杂的板材的弹性模量,验证了该方法的有效性、程序的正确性和可靠性。  相似文献   

13.
The problem of an infinite solid containing an arbitrary number of non-overlapping spherical cavities and inclusions with arbitrary sizes and locations is considered. The infinite solid and the spherical inclusions are made of different isotropic, linearly elastic materials. The spherical cavities are assumed to carry arbitrary tractions, and the spherical inclusions are assumed to be perfectly bonded to the infinite solid. The boundary and interfacial displacements and tractions are represented by truncated series of surface spherical harmonics. The problem involving multiple spherical features is replaced by a sequence of problems involving a single spherical feature via Schwarz's alternating method which accounts for the interactions in the course of an iterative process. Problems involving a single spherical feature are solved by employing the Papkovich–Neuber functions, and the interactions are evaluated by applying a least squares method. A robust scheme is introduced to control the total errors on the spherical boundaries and interfaces and to choose the number of terms in the series expansions. Several numerical examples are given to address the efficiency and the accuracy of the proposed method.  相似文献   

14.
Summary Green's functions for an infinite three-dimensional elastic solid containing a circular crack are derived in terms of integrals of elementary functions. The solid is assumed to be either isotropic or transversely isotropic (with the crack being parallel to the plane isotropy).  相似文献   

15.
An elastic half plane with an oblique edge crack is considered in this paper. A pair of concentrated forces or point dislocations is assumed to act at an arbitrary point in the half plane. The half plane with an edge crack is first mapped into a unit circle by a rational mapping function so that the following analysis can be carried out on the mapped plane analytically. Then the complex stress functions are derived by separating the whole problem into two parts; one is the principal part corresponding to the infinite plane acted on by concentrated forces or dislocations, the other is the holomorphic part, which can be determined by making use of the property of regularity of complex stress functions. The stress intensity factors of the crack can be calculated with different inclined angles of the crack, and the displacement and stress components at an arbitrary position in the half plane can be expressed explicitly.  相似文献   

16.
This paper presents the mode I stress intensity factors for functionally graded solid cylinders with an embedded penny-shaped crack or an external circumferential crack. The solid cylinders are assumed under remote uniform tension. The multiple isoparametric finite element method is used. Various types of functionally graded materials and different gradient compositions for each type are investigated. The results show that the material property distribution has a quite considerable influence on the stress intensity factors. The influence for embedded cracks is quite different from that for external cracks.  相似文献   

17.
A general numerical approach is developed to model the elastic behaviours and failure processes of heterogeneous materials. The heterogeneous material body is assumed composed of a large number of convex polygon lattices with different phases. These phases are locally isotropic and elastic-brittle with the different lattices displaying variable material parameters and a Weibull-type statistical distribution. When the effective strain exceeds a local fracture criterion, the full lattice exhibits failure uniformly, and this is modelled by assuming a very small Young modulus value. An auto-select loading method is employed to model the failure process. The proposed hybrid approach is applied to plane stress problems with fracture patterns and effective load-displacement curves presented to illustrate the full failure process.  相似文献   

18.
In the present work, the extended finite element method has been used to simulate the fatigue crack growth problems in functionally graded material in the presence of holes, inclusions, and minor cracks under plastic and plane stress conditions for both edge and center cracks. Both soft and hard inclusions have been implemented in the problems. The validity of linear elastic fracture mechanics theory is limited to the brittle materials. Therefore, the elastic plastic fracture mechanics theory needs to be utilized to characterize the plastic behavior of the material. A generalized Ramberg-Osgood material model has been used for modeling purposes.  相似文献   

19.
A two-dimensional heterogeneous infinite element method (HIEM) for modeling heterogeneous materials, like imbedded inclusions with surrounding interphases, is proposed in this paper. The special element, called heterogeneous infinite element (HIE), was formulated based on the conventional finite element method (FEM) using the similarity stiffness property and matrix condensing operations. An HIE-FE coupling scheme was also developed and implemented using the commercial software ABAQUS to conduct a complete elastostatic analysis.

The proposed approach was first validated so that heterogeneous material containing circular inclusions can be studied. The displacement and stress distribution around the inclusions were accurately captured. The approach was then applied to analyze the effective modulus of the single-cell and 2 × 2-cell square models with the presence of interphases. The effects of varying the modulus and thickness of the interphases were also examined. Finally, the influences of the shape and orientation of the inclusions are investigated. Results show that different arrangements in the model can have marked influences on the evaluation of the effective elastic modulus for periodic fiber-reinforced composites.  相似文献   


20.
The problem of an infinite, isotropic elastic plane containing an arbitrary number of circular elastic inclusions is considered. The analysis procedure is based on the use of a complex singular integral equation. The unknown tractions at each circular boundary are approximated by a truncated complex Fourier series. A system of linear algebraic equations is obtained by using the classical Galerkin method and the Gauss–Seidel algorithm is used to solve the system. Several numerical examples are considered to demonstrate the effectiveness of the approach. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号