首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
针对时滞系统、应用神经网络的非线性逼近能力,采用神经网络实现内模控制中被控对象的正模型及内模控制器,用Lyapunov稳定性定理证明神经网络控制系统的稳定性。仿真结果说明神经网络内模控制方案的优越性。  相似文献   

2.
This paper is concerned with the controller design of networked control systems. The continuous time plant with parameter uncertainty and state delay is studies. A new model of the networked control system is provided under consideration of the nonideal network conditions. In terms of the given model, a controller design method is proposed based on a delay dependent approach. The maximum allowable synthetical bounds related with the discarded data packet and network‐included delay and the feedback gain of a memoryless controller can be derived by solving a set of linear matrix inequalities for the stabilizablity of the networked control system based on Lyapunov functional method. An example is given to show the effectiveness of our method.  相似文献   

3.
A novel discrete‐time repetitive controller design for time‐delay systems subject to a periodic reference and exogenous periodic disturbances is presented. The main idea behind the proposed approach is to take advantage of the plant delay in the controller design, and not to compensate for the effect of this delay. To facilitate this concept, we introduce an appropriate time‐delay and a compensator in a positive feedback connection with the plant, such that a generator for periodic signals is constructed. Then a proportional controller is used to stabilize the closed‐loop system. The tracking control capability is thus guaranteed according to the internal model principle (IMP). In addition, to attenuate external periodic disturbances, a disturbance observer (DO) is developed to simultaneously achieve reference tracking and disturbance rejection. The possible fractional delay due to the digital discretization is handled by using a fractional delay filter approximation. The proposed controller has a simple structure, in which only a proportional parameter and a low‐pass filter are required to be chosen. The closed‐loop stability conditions and a robustness analysis under model uncertainties are studied. Numerical simulations and practical experiments on a servo motor system are conducted to verify the feasibility and simplicity of the proposed controller. Copyright © 2011 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society  相似文献   

4.
针对具有控制约束的网络控制系统(Networked Control Systems,NCS)的特点,建立了具有外部扰动的网络控制系统模型,对其H∞性能加以分析和研究,并验证所取得的理论成果.假设具有控制约束的网络控制系统的H∞控制器与执行器均为事件驱动,传感器为时间驱动,且网络诱导时延小于传感器的采样周期,然后将此类网络控制系统的广义被控对象建模为一类线性离散系统,运用Lyapunov函数和线性矩阵不等式(LMI),导出闭环系统渐近稳定且满足给定H∞性能指标的充分条件,并给出了控制器的具体求法.得到了系统的H∞控制器存在条件及具体方法,通过设计该控制器,使具有外部扰动的网络控制系统的性能有很大的改善,通过Matlab仿真证明该控制器行之有效.  相似文献   

5.
针对模型不确定性的连续时间时滞系统,提出了一种新的神经网络自适应控制。系统的辨识模型是由神经网络和系统的已知信息组合构成,在此基础上,建立时滞系统的预测模型。基于神经网络预测模型的自适应控制器能够实现期望轨线的跟踪,理论上证明了闭环系统的稳定性。连续搅拌釜式反应器仿真结果表明了该控制方案的有效性。  相似文献   

6.
郑劭馨  薛薇  薛艳君 《控制工程》2008,15(3):232-234
为了解决网络诱导时延给网络化控制系统(Networked Control Systems,NCSs)带来的不利影响,在分析Ethernet时延特性的基础上,提出了一种不依赖于网络诱导时延精确数学模型的改进的神经元PID控制器。该控制器利用单神经元实现自适应PID控制,利用神经元良好的学习能力克服网络化控制系统中不确定的网络诱导时延的影响。改进的神经元PID控制器根据有限的时延信息动态调整用于计算控制输出量的参数,该控制器还利用一种在线调整规则对神经元的比例系数进行在线更新,并针对Ethernet这类网络进行了仿真研究。仿真结果表明,所提出的方法能有效提高控制系统的性能。  相似文献   

7.
本文对一类离散时间双线性系统进行网络化预测控制研究.针对控制系统网络信道传输引起的前向通道和反馈通道时延问题,基于双线性系统结构特性提出2种逐步优化算法对非凸优化问题进行求解,进而得到未来时刻的预测控制序列.仿真实例说明所求预测控制序列可以主动补偿网络引起的时延问题,从而说明所提出预测控制算法的有效性.  相似文献   

8.
大纯滞后系统的自适应补偿控制   总被引:3,自引:0,他引:3  
针对工业过程中普遍存在的纯滞后对象的控制问题,提出了一种带误差补偿环节的模型参考自适应控制方法。仿真结果表明,这种自适应控制器对于一类大纯滞后系统的控制具有比较好的控制效果,且结构简单,有一定的鲁棒性。  相似文献   

9.
以线性时不变系统为被控对象,建立了四轮移动机器人网络控制系统的离散数学模型。诱导时延是影响系统性能的关键因素,通过在节点中设置缓冲区的方法可以将网络控制系统中的随机诱导时延转化为确定性时延,从而将网络控制系统由随机系统转化为确定性系统。通过被控对象移动机器人控制实验系统,设计了一个能处理网络诱导时延的输出反馈控制器,分析了采样周期和网络诱导时延对网络控制系统稳定性的影响。仿真结果表明了该控制器和控制策略的正确性及有效性。  相似文献   

10.
In this paper, a new technique of time-delay compensation is proposed for active control of a flexible hub–beam system. The first-order approximation coupling (FOAC) model proposed recently for dynamics of hub–beam systems is used to verify the applicability of this technique. The FOAC model is first linearized to obtain a linearized equation. The linearized equation with time delay is then transformed into a standard form with no time delay by a particular integral transformation. The time-delay controller is designed based on this standard equation using the classical optimal tracking control theory. Since the controller is a function of modal coordinates, a modal filter is presented to estimate the modal coordinates from physical sensor measurements. The effectiveness of the proposed technique for time delay is demonstrated by numerical simulations. Simulation results indicate that a very small time delay may result in instability of the control system if it is not compensated in control design. The proposed time-delay controller is effective in controlling the system even when the maximum time delay for stability without time-delay compensation is greatly exceeded. Moreover, for the system without time delay, the proposed time-delay controller may possibly obtain much better control effectiveness than the controller without time delay.  相似文献   

11.
针对一类具有不确定参数的被控对象模型,考虑长时延有界及数据丢包的情况,建立网络控制系统闭环模型.在所提模型的基础上,用线性矩阵不等式的形式给出了系统渐近稳定的状态反馈控制器的设计方法.仿真结果验证了本文方法的有效性.  相似文献   

12.
This paper is mainly concerned with the model predictive control (MPC) of networked control systems (NCSs) with uncertain time delay and data packets disorder. The network-induced time delay is described as bounded and arbitrary process. For the usual state feedback controller, by considering all the possibilities of delays, an augmented state space model of the closed-loop system, which characterizes all the delay cases, is obtained. The stability conditions are given according to the Lyapunov method based on this augmented model. The stability property is inherited in MPC which explicitly considers the physical constraints. A numerical example is given to demonstrate the effectiveness of the proposed MPC.  相似文献   

13.
针对一类状态时滞奇异系统,研究状态反馈控制器的设计问题。基于Lyapunov稳定性理论和线性矩阵不等式(LMI)工具,当时滞常数精确已知时,设计带有记忆的状态反馈控制器,使得相应的闭环系统渐近稳定;当时滞常数不能精确已知时,通过求解相应的线性矩阵不等式,得到满足设计要求的对时滞参数的自适应控制器,使得时滞系统镇定。最后,仿真实例表明此方法的有效性。  相似文献   

14.
This article studies the problem of H controller design for networked control systems (NCSs) with time delay and packet dropout. A linear estimation-based time delay and packet dropout compensation method is proposed. The delay switching-based method is presented to deal with the variation of time delay, and H controller design is presented for NCSs with packet dropout compensation by using linear matrix inequality (LMI)-based method. Then the combined delay switching and parameter uncertainty-based method is presented to model the variation of time delay, and H controller design is also presented. The simulation results illustrate the effectiveness of the newly proposed linear estimation-based time delay and packet dropout compensation.  相似文献   

15.
Decentralized robust control problem is investigated for a class of large scale systems with time varying delays. The considered systems have mismatches in time delay functions. A state coordinate transformation is first employed to change the original system into a cascade system. Then the virtual linear state feedback controller is developed to stabilize the first subsystem. Based on the virtual controller, a memoryless state feedback controller is constructed for the second subsystem. By choosing new Lyapunov Krasovskii functional, we show that the designed decentralized continuous adaptive controller makes the solutions of the closed-loop system exponentially convergent to a ball, which can be rendered arbitrary small by adjusting design parameters. Finally, a numerical example is given to show the feasibility and effectiveness of the proposed design techniques.  相似文献   

16.
This paper proposes a systematic methodology for the enhancement of robust stability and performance of a fuzzy parametric uncertain time‐delay system. A fuzzy parametric uncertain time‐delay system is an example for a linear time‐invariant uncertain time‐delay system with fuzzy coefficients. By using the nearest approximation, these fuzzy coefficients are approximated into crisp sets called intervals to get an interval system. The proposed approach develops the necessary and sufficient stability conditions of interval polynomials for determining the robust stability. Then, by using these developed stability conditions, a set of inequalities in terms of controller parameters are obtained from the closed‐loop characteristic polynomial of fuzzy parametric uncertain time‐delay system. Finally, these inequalities are solved to obtain robust controller with the help of a differential evolution algorithm for an unstable fuzzy parametric uncertain time‐delay system. Consequently, a lead‐lag compensator is constructed based on the frequency domain approach to improve the performance of the fuzzy parametric uncertain time‐delay system. The proposed method has the advantage of less computational complexity and easy to implement on a digital computer. The viability of the proposed methodology is illustrated through a numerical example for its successful implementation. The efficacy of the proposed methodology is also evaluated against the available approach in the literature and the simulation results are successfully implemented for robust stability and performance of fuzzy parametric uncertain time‐delay systems.  相似文献   

17.
Nowadays, more and more field devices are connected to the central controller through a serial communication network such as fieldbus or industrial Ethernet. Some of these serial communication networks like controller area network (CAN) or industrial Ethernet will introduce random transfer delays into the networked control systems (NCS), which causes control performance degradation and even system instability. To address this problem, the adaptive predictive functional control algorithm is derived by applying the concept of predictive functional control to a discrete state space model with variable delay. The method of estimating the network-induced delay is also proposed to facilitate the control algorithm implementing. Then, an NCS simulation research based on TrueTime simulator is carried out to validate the proposed control algorithm. The numerical simulations show that the proposed adaptive predictive functional control algorithm is effective for NCS with random delays.  相似文献   

18.
This paper investigates the stabilization problem of the nonlinear networked control systems (NCSs) with drops and variable delays. The NCS is modeled as a sampled‐data system. For such a sampled‐data NCS, the stability properties are studied for delay that can be both shorter and longer than one sampling period, respectively. The exponential stability conditions are derived in terms of the parameters of the plant and time delay. On the other hand, a model‐based control scheme based on an approximate discrete‐time model of the plant is presented to guarantee the stability of the closed‐loop system subject to variable time delays and packet losses. The performance of the proposed control schemes are examined through numerical simulations of an automated rendezvous and docking of spacecraft system. Moreover, the simulations show that by employing the model‐based controller, a higher closed‐loop control performance can be achieved. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
针对同时具有不确定短时延及数据包丢失的网络控制系统,引入丢包补偿器补偿丢包对系统的影响,当发生数据包丢失时,控制器采用丢包补偿器产生的预估状态代替系统的真实状态计算控制量。同时考虑不确定短时延的影响,将网络控制系统建模为一类具有参数不确定的离散切换系统.利用线性矩阵不等式(linear matrix inequality,简称LMI)方法给出了系统的保成本控制器和丢包补偿器的协同设计方法,仿真结果表明所提出的方法是有效的。  相似文献   

20.
This paper investigates the problem of network‐based control for stochastic plants. A new model of stochastic time‐delay systems is presented where both network‐induced delays and packet dropouts are taken into consideration for a sampled‐data network‐based control system. This model consists of two successive delay components in the state, and we solve the network‐based H control problem based on this model by a new stochastic delay system approach. The controller design for the sampled‐data systems is carried out in terms of linear matrix inequalities. Finally, we illustrate the methodology by applying these results to an air vehicle control problem. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号