首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 802 毫秒
1.
Solving reliability and redundancy allocation problems via meta-heuristic algorithms has attracted increasing attention in recent years. In this study, a recently developed meta-heuristic optimization algorithm cuckoo search (CS) is hybridized with well-known genetic algorithm (GA) called CS–GA is proposed to solve the reliability and redundancy allocation problem. By embedding the genetic operators in standard CS, the balance between the exploration and exploitation ability further improved and more search space are observed during the algorithms’ performance. The computational results carried out on four classical reliability–redundancy allocation problems taken from the literature confirm the validity of the proposed algorithm. Experimental results are presented and compared with the best known solutions. The comparison results with other evolutionary optimization methods demonstrate that the proposed CS–GA algorithm proves to be extremely effective and efficient at locating optimal solutions.  相似文献   

2.
The main goal of the present paper is to present a two phase approach for solving the reliability–redundancy allocation problems (RRAP) with nonlinear resource constraints. In the first phase of the proposed approach, an algorithm based on artificial bee colony (ABC) is developed to solve the allocation problem while in the second phase an improvement of the solution as obtained by this algorithm is made. Four benchmark problems in the reliability–redundancy allocation and two reliability optimization problems have been taken to demonstrate the approach and it is shown by comparison that the solutions by the new proposed approach are better than the solutions available in the literature.  相似文献   

3.
提出一种改进差分进化算法(IDE),以解决系统可靠性冗余分配问题.在罚函数法的基础上,对约束处理方法进行改进. 新约束处理方法在搜索过程中不需要在每一步都计算惩罚函数值,加快了寻优速度.具有良好的通用性,可以引入到其他智能优化算法中.将改进的算法用于求解4类典型的系统可靠性冗余分配问题,实验结果表明了所提出的改进算法具有很好的寻优精度和收敛速度.  相似文献   

4.
This paper proposed a penalty guided artificial bee colony algorithm (ABC) to solve the reliability redundancy allocation problem (RAP). The redundancy allocation problem involves setting reliability objectives for components or subsystems in order to meet the resource consumption constraint, e.g. the total cost. RAP has been an active area of research for the past four decades. The difficulty that one is confronted with the RAP is the maintenance of feasibility with respect to three nonlinear constraints, namely, cost, weight and volume related constraints. In this paper nonlinearly mixed-integer reliability design problems are investigated where both the number of redundancy components and the corresponding component reliability in each subsystem are to be decided simultaneously so as to maximize the reliability of the system. The reliability design problems have been studied in the literature for decades, usually using mathematical programming or heuristic optimization approaches. To the best of our knowledge the ABC algorithm can search over promising feasible and infeasible regions to find the feasible optimal/near-optimal solution effectively and efficiently; numerical examples indicate that the proposed approach performs well with the reliability redundant allocation design problems considered in this paper and computational results compare favorably with previously-developed algorithms in the literature.  相似文献   

5.
Fuzzy global optimization of complex system reliability   总被引:10,自引:0,他引:10  
The problem of optimizing the reliability of complex systems has been modeled as a fuzzy multi-objective optimization problem. Three different kinds of optimization problems: reliability optimization of a complex system with constraints on cost and weight; optimal redundancy allocation in a multistage mixed system with constraints on cost and weight; and optimal reliability allocation in a multistage mixed system with constraints on cost, weight, and volume have been solved. Four numerical examples have been solved to demonstrate the effectiveness of the present methodology. The influence of various kinds of aggregators is also studied. The inefficiency of the noncompensatory min operator has been demonstrated. One of the well-known global optimization meta-heuristics, the threshold accepting, has been invoked to take care of the optimization part of the model. A software has been developed to implement the above model. The results obtained are encouraging  相似文献   

6.
Task allocation policy and hardware redundancy policy for distributed computing system (DCS) are of great importance as they affect many system characteristics such as system cost, system reliability and performance. In recent years, abundant research has been carried out on the optimal task allocation and/or hardware redundancy problem, most of which took a reliability-oriented approach, i.e., the optimization criterion was system reliability maximization. Nevertheless, besides system reliability, other system characteristics such as system cost may be of great concern to management. In this paper, we take a cost-oriented approach to the optimal task allocation and hardware redundancy problem for DCS, which addresses both system cost and system reliability issues. A system cost model which could reflect the impact of system unreliability on system cost is developed, and by minimizing the total system cost, a satisfactory level of system reliability could be reached simultaneously. In the reliability modeling and analysis of DCS, we take both hardware reliability and software reliability into account. Two numerical examples are given to illustrate the formulation and solution procedures, in which genetic algorithm is used. Results show that based on the developed system cost model, appropriate decision-makings on task allocation and hardware redundancy policies for DCS could be made, and the result obtained seems to be a fairly good trade-off between system cost and system reliability.  相似文献   

7.
Solving reliability-redundancy optimization problems via meta-heuristic algorithms has attracted increasing attention in recent years. In this paper, an effective coevolutionary differential evolution with harmony search algorithm (CDEHS) is proposed to solve the reliability-redundancy optimization problem by dividing the problem into a continuous part and an integer part. In CDEHS, two populations evolve simultaneously and cooperatively, where one population for the continuous part evolves by means of differential evolution while another population for the integer part evolves by means of harmony search. After half of the whole evolving process, the integer part stops evolving and provides the best solution to the other part for further evolving with differential evolution. Simulations results based on three typical problems and comparisons with some existing algorithms show that the proposed CDEHS is effective, efficient and robust for solving the reliability-redundancy optimization problem.  相似文献   

8.
Tolerancing is an important issue in product and manufacturing process designs. The allocation of design tolerances between the components of a mechanical assembly and manufacturing tolerances in the intermediate machining steps of component fabrication can significantly affect the quality, robustness and life-cycle of a product. Stimulated by the growing demand for improving the reliability and performance of manufacturing process designs, the tolerance design optimization has been receiving significant attention from researchers in the field. In recent years, a broad class of meta-heuristics algorithms has been developed for tolerance optimization. Recently, a new class of stochastic optimization algorithm called self-organizing migrating algorithm (SOMA) was proposed in literature. SOMA works on a population of potential solutions called specimen and it is based on the self-organizing behavior of groups of individuals in a “social environment”. This paper introduces a modified SOMA approach based on Gaussian operator (GSOMA) to solve the machining tolerance allocation of an overrunning clutch assembly. The objective is to obtain optimum tolerances of the individual components for the minimum cost of manufacturing. Simulation results obtained by the SOMA and GSOMA approaches are compared with results presented in recent literature using geometric programming, genetic algorithm, and particle swarm optimization.  相似文献   

9.
In this paper, a mathematical formulation is first derived for a homogenous fuzzy series–parallel redundancy allocation problem, where both the system and its subsystems can only take two states of complete perfect and complete failure. Identical redundant components are included in order to achieve desirable system reliability. The components of each subsystem characterized by their cost, weight, and reliability, are purchased from the market under all-unit discount and incremental quantity discount strategies. The goal is to find the optimum combination of the number of components for each subsystem that maximizes the system reliability under total fuzzy cost and weight constraints. An improved fruit fly optimization algorithm (IFOA) is proposed to solve the problem, where a particle swarm optimization, a genetic algorithm, and a Tabu search algorithm are utilized to validate the results obtained. These algorithms are the most common ones in the literature to solve series–parallel redundancy allocation problems. Moreover, design of experiments using the Taguchi approach is employed to calibrate the parameters of the algorithms. At the end, some numerical examples are solved to demonstrate the applicability of the proposed methodology. The results are generally in favor IFOA.  相似文献   

10.
Bridge topology is a commonly used structure for load balancing and control in applications such as electric power generation and transmission, transportation and computer networks, and electronic circuits. The reliability performance of engineering systems with bridge topology can be characterized by multi-state models and enhanced by allocating redundant elements. The redundancy allocation problem, which aims at finding the optimal trade-off between system performance and investment costs, is proved difficult to solve and has received much attention in the literature. This paper advances a meta-heuristic approach called particle swarm optimization and applies it to effectively solve for near-optimal solutions to the redundancy allocation problem of multi-state systems with bridge topology. Two typical redundancy allocation problem formulations, i.e., minimizing the system cost while satisfying required system availability and maximizing the system availability with a limited budget, are studied. Heterogeneous redundancy, i.e., the mixture of redundant element types in each subsystem, is allowed in the formulations. The effectiveness and efficiency of the proposed approach are validated by the case studies of a bridge-structured coal conveyor multi-state system with extra constraints. The research results have practical meaning to the design and improvement of engineering systems with bridge topology.  相似文献   

11.
The main objective of this paper is to solve the bi-objective reliability redundancy allocation problem for series-parallel system where reliability of the system and the corresponding designing cost are considered as two different objectives. In their formulation, reliability of each component is considered as a triangular fuzzy number. In order to solve the problem, developed fuzzy model is converted to a crisp model by using expected values of fuzzy numbers and taking into account the preference of decision maker regarding cost and reliability goals. Finally the obtained crisp optimization problem has been solved with particle swarm optimization (PSO) and compared their results with genetic algorithm (GA). Examples are shown to illustrate the method. Finally statistical simulation has been performed for supremacy the approach.  相似文献   

12.
The problem of optimal allocation of flexible AC transmission systems (FACTS) devices is deemed as a formidable optimisation problem. Metaheuristics are the common approaches for solving FACTS allocation problems. Imperialistic competitive algorithm (ICA) is a well-established optimisation algorithm which has been successfully employed for solving complex optimisation problems in different fields. It is inspired by imperialistic competition and socio-political evolution of human beings and offers appropriate exploration and exploitation capabilities during the search for global optima. This paper employs ICA for solving FACTS allocation problem in a way that low values of overloads and voltage deviations are resulted both during line outage contingencies and demand growth. Thyristor-controlled phase shifting transformers (TCPST’s) and thyristor-controlled series compensators (TCSC’s) have been used as FACTS devices. The results of employing ICA for FACTS allocation problem indicate that ICA Offers better results than artificial bee colony (ABC), gravitational search algorithm (GSA), evolutionary programming (EP), bat swarm optimisation (BSO), nonlinear programming (NLP), pattern search (PS), asexual reproduction optimisation (ARO) and backtracking search algorithm (BSA).  相似文献   

13.
Meta-heuristic algorithms have been successfully applied to solve the redundancy allocation problem in recent years. Among these algorithms, the electromagnetism-like mechanism (EM) is a powerful population-based algorithm designed for continuous decision spaces. This paper presents an efficient memory-based electromagnetism-like mechanism called MBEM to solve the redundancy allocation problem. The proposed algorithm employs a memory matrix in local search to save the features of good solutions and feed it back to the algorithm. This would make the search process more efficient. To verify the good performance of MBEM, various test problems, especially the 33 well-known benchmark instances in the literature, are examined. The experimental results show that not only optimal solutions of all benchmark instances are obtained within a reasonable computer execution time, but also MBEM outperforms EM in terms of the quality of the solutions obtained, even for large-size problems.  相似文献   

14.
Vehicle routing problem with time windows (VRPTW) is a well-known combinatorial problem. Many researches have presented meta-heuristics are effective approaches for VRPTW. This paper proposes a hybrid approach, which consists of ant colony optimization (ACO) and Tabu search, to solve the problem. To improve the performance of ACO, a neighborhood search is introduced. Furthermore, when ACO is close to the convergence Tabu search is used to maintain the diversity of ACO and explore new solutions. Computational experiments are reported for a set of the Solomon’s 56 VRPTW and the approach is compared with some meta-heuristic published in literature. Results show that considering the tradeoff of quality and computation time, the hybrid algorithm is a competitive approach for VRPTW.  相似文献   

15.
This research paper presents a multi-objective reliability redundancy allocation problem for optimum system reliability and system cost with limitation on entropy of the system which is very essential for effective sustainability. Both crisp and interval-valued system parameters are considered for better realization of the model in more realistic sense. We propose that the system cost of the redundancy allocation problem depends on reliability of the components. A subpopulation and entropy based region reducing genetic algorithm (GA) with Laplace crossover and power mutation is proposed to determine the optimum number of redundant components at each stage of the system. The approach is demonstrated through the case study of a break lining manufacturing plant. A comprehensive study is conducted for comparing the performance of the proposed GA with the single-population based standard GA by evaluating the optimum system reliability and system cost with the optimum number of redundant components. Set of numerical examples are provided to illustrate the effectiveness of the redundancy allocation model based on the proposed optimization technique. We present a brief discussion on change of the system using graphical phenomenon due to the changes of parameters of the system. Comparative performance studies of the proposed GA with the standard GA demonstrate that the proposed GA is promising to solve the reliability redundancy optimization problem providing better optimum system reliability.  相似文献   

16.
This paper addresses the heterogeneous redundancy allocation problem in multi-state series-parallel reliability structures with the objective to minimize the total cost of system design satisfying the given reliability constraint and the consumer load demand. The demand distribution is presented as a piecewise cumulative load curve and each subsystem is allowed to consist of parallel redundant components of not more than three types. The system uses binary capacitated components chosen from a list of available products to provide redundancy so as to increase system performance and reliability. The components are characterized by their feeding capacity, reliability and cost. A system that consists of elements with different reliability and productivity parameters has the capacity strongly dependent upon the selection of constituent components. A binomial probability based method to compute exact system reliability index is suggested. To analyze the problem and suggest an optimal/near-optimal system structure, an ant colony optimization algorithm has been presented. The solution approach consists of a series of simple steps as used in early ant colony optimization algorithms dealing with other optimization problems and offers straightforward analysis. Four multi-state system design problems have been solved for illustration. Two problems are taken from the literature and solved to compare the algorithm with the other existing methods. The other two problems are based upon randomly generated data. The results show that the method can be appealing to many researchers with regard to the time efficiency and yet without compromising over the solution quality.  相似文献   

17.
In this paper simulated annealing and genetic algorithms are applied to the graph partitioning problem. These techniques mimic processes in statistical mechanics and biology, respectively, and are the most popular meta-heuristics or general-purpose optimization strategies. A hybrid algorithm for circuit partitioning, which uses tabu search to improve the simulated annealing meta-heuristics, is also proposed and compared with pure tabu search and simulated annealing algorithms, and also with a genetic algorithm. The solutions obtained are compared and evaluated by including the hybrid partitioning algorithm in a parallel test generator which is used to determine the test patterns for the circuits of the frequently used ISCAS benchmark set.  相似文献   

18.
In this study, we consider a bi-objective redundancy allocation problem on a series–parallel system with component level redundancy strategy. Our aim is to maximize the minimum subsystem reliability, while minimizing the overall system cost. The Pareto solutions of this problem are found by the augmented ε-constraint approach for small and moderate sized instances. After finding the Pareto solutions, we apply a well known sorting procedure, UTADIS, to categorize the solutions into preference ordered classes, such as A, B, and C. In this procedure, consecutive classes are separated by thresholds determined according to the utility function constructed from reference sets of classes. In redundancy allocation problems, reference sets may contain a small number of solutions (even a single solution). We propose the τ-neighborhood approach to increase the number of references. We perform experiments on some reliability optimization test problems and general test problems.  相似文献   

19.
Constructive multistart search algorithms are commonly used to address combinatorial optimization problems; however, constructive multistart search algorithm performance is fundamentally affected by two factors: (i) The choice of construction algorithm utilized and (ii) the rate of state space search redundancy. Construction algorithms are typically specific to a particular combinatorial optimization problem; therefore, we first investigate construction algorithms for iterative hill climbing applied to the traveling salesman problem and experimentally determine the best performing algorithms. We then investigate the more general problem of utilizing record‐keeping mechanisms to mitigate state space search redundancy. Our research shows that a good choice of construction algorithm paired with effective record keeping significantly improves the quality of traveling salesmen problem solutions in a constant number of state explorations. Particularly, we show that Bloom filters considerably improve time performance and solution quality for iterative hill climbing approaches to the traveling salesman problem.  相似文献   

20.
With the popularity of multilevel design in large scale systems, reliability redundancy allocation on multilevel systems is becoming attractive to researchers. Multilevel redundancy allocation problem (MLRAP) is not only NP-hard, but also qualifies as hierarchy optimization problem. Exact method could not tackle MLRAP very well, so heuristic and meta-heuristic methods are often used to solve it. To improve the effectiveness of current algorithms on MLRAP, this paper proposes a hybrid genetic algorithm (HGA) based on the two dimensional redundancy encoding mechanism. Instead of hierarchical genotype representation, a two dimensional array is used to represent the solutions to MLRAP. Each row of the array contains the redundancy information of a certain unit in the system and each element in one row stands for the redundancy value of one element of that unit. The number of rows of this array is fixed and equals to the number of distinct units in the system. Each row of the array is an unfixed-length vector whose length depends on the redundancy of all elements of its parent unit. On top of this two dimensional arrays, a local search operator employing simulated annealing strategy is used to generate new population for the next generation instead of the traditional genetic operators. Experimental results have shown that our two dimensional arrays based HGA outperforms the state-of-the-art approaches using two kinds of multilevel system structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号