首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Concerns over the fate and bioaccumulation of mercury (Hg) inputs to Onondaga Lake, a hypereutrophic lake in central New York, prompted an investigation into the concentrations and fluxes of Hg discharge from the Onondaga County Metropolitan Wastewater Treatment Plant (METRO WWTP). Discharge of methyl Hg (MeHg) is of concern because it is the form of Hg that readily bioaccumulates along the aquatic food chain. This study incorporated clean protocols for sampling and Hg analysis to evaluate: seasonal patterns in the concentrations of total Hg (THg) and MeHg in the WWTP unit processes; the production of MeHg within the unit processes of the WWTP; the overall fate of THg and MeHg within the WWTP; and the relative impact of the Hg discharged from the WWTP to Onondaga Lake. Concentrations of THg (range: 80-860 ng/L) and MeHg (0.7-17 ng/L) in raw sewage were highly variable, with higher concentrations observed in the summer months. The dynamics of THg though the WWTP were correlated with total suspended solids (TSS). As a result, the majority of the THg removal (55%) occurred during primary treatment. Overall, about 92% of the THg entering the plant was removed as sludge, with volatilization likely a minor component of the overall Hg budget. The transformation of MeHg through the plant differed from THg in that MeHg was not correlated with TSS, and displayed strong seasonal differences between winter (November to April) and summer (May-October) months. During the summer months, substantial net methylation occurred in the activated sludge secondary treatment, resulting in higher MeHg concentrations in secondary effluent. Net demethylation was the dominant mechanism during tertiary treatment, resulting in removal of substantial MeHg from the secondary effluent. The overall MeHg removal efficiency through the plant was about 70% with more efficient removal during summer months. Sediment trap collections made below the epilimnion of Onondaga Lake indicated average deposition rates of 12 μg/m2-day for THg and 0.33 μg/m2-day for MeHg. These deposition rates are more than an order of magnitude higher than the thermocline area normalized external loads from METRO effluent (0.85 μg/m2-day for THg, 0.05 μg/m2-day for MeHg). Our findings indicate that the impact of the discharge from METRO is relatively small, contributing about 10-15% of Hg to the total gross Hg input to the hypolimnion of the lake.  相似文献   

2.
The fate of 14 antidepressants along with their respective N-desmethyl metabolites and the anticonvulsive drug carbamazepine (CBZ) was studied in 5 different sewage treatment plants (STPs) across Canada. Using two validated LC-MS/MS analytical methods, the concentrations of the different compounds were determined in raw influent, final effluent and treated biosolids samples. Out of the 15 compounds investigated, 13 were positively detected in most 24-h composite raw influent samples. Analysis showed that venlafaxine (VEN), its metabolite O-desmethylvenlafaxine (DVEN), citalopram (CIT), and CBZ were detected at the highest concentrations in raw influent (up to 4.3 μg L−1 for DVEN). Cumulated results showed strong evidence that primary treatment and trickling filter/solids contact has limited capacity to remove antidepressants from sewage, while activated sludge, biological aerated filter, and biological nutrient removal processes yielded moderate results (mean removal rates: 30%). The more recalcitrant compounds to be eliminated from secondary STPs were VEN, DVEN and CBZ with mean removal rates close to 12%. Parent compounds were removed to a greater degree than their metabolites. The highest mean concentrations in treated biosolids samples were found for CIT (1033 ng g−1), amitriptyline (768 ng g−1), and VEN (833 ng g−1). Experimental sorption coefficients (Kd) were also determined. The lowest Kd values were obtained with VEN, DVEN, and CBZ (67-490 L kg−1). Sorption of these compounds on solids was assumed negligible (log Kd ≤ 2). However, important sorption on solids was observed for sertraline, desmethylsertraline, paroxetine and fluoxetine (log Kd > 4).  相似文献   

3.
The broad spectrum antimicrobials triclosan (TCS) and triclocarban (TCC) are commonly detected in the environment. However, there is very limited understanding of the aquatic ecological implications of these agents. During this study, river biofilms were cultivated using 10 µg l− 1 of TCS or TCC and the equivalent in nutrients (carbon, nitrogen) over a developmental period of 8 weeks. Confocal laser microscopy showed that the biofilm communities developing under the influence of TCS and TCC had community architecture and composition different from either control or nutrient exposed communities. Microscale analyses of biofilm community structure indicated a significant reduction in algal biomass (p < 0.05) as a result of exposure to either TCS or TCC. Thymidine incorporation did not detect significant differences between control and treated communities. The use of carbon utilization assays based on growth indicated that, in general, TCS and TCC suppressed utilization. The community was altered from one dominated by autotrophic processes to one dominated by heterotrophic processes. Both TCS and TCC treatments resulted in significant (p < 0.05) alterations in the composition of the EPS matrix of the communities, suggesting significant changes in community composition. Denaturing gradient gel electrophoresis and PCA-ANOSIM analyses indicated a significant change occurred in the bacterial community as a consequence of TCS treatments. Enumeration of micrometazoa and protozoa revealed an increase in micrometazoan numbers over control values, whereas no clear impact on protozoa was detected in any treatment. This study indicated significant effects of 10 µg l− 1 TCS and TCC on microbial community composition, algal biomass, architecture and activity.  相似文献   

4.
Mechanical aeration is critical to sewage sludge bio-drying, and the actual water loss caused by aeration can be better understood from investigations of the relationship between aeration and water evaporation from the sewage sludge bio-drying pile based on in situ measurements. This study was conducted to investigate the effects of forced air volume on the evaporation of water from a sewage sludge bio-drying pile. Dewatered sewage sludge was bio-dried using control technology for bio-drying, during which time the temperature, superficial air velocity and water evaporation were measured and calculated. The results indicated that the peak air velocity and water evaporation occurred in the thermophilic phase and second temperature-increasing phase, with the highest values of 0.063 ± 0.027 m s?1 and 28.9 kg ton?1 matrix d?1, respectively, being observed on day 4. Air velocity above the pile during aeration was 43–100% higher than when there was no aeration, and there was a significantly positive correlation between air volume and water evaporation from day 1 to 15. The order of daily means of water evaporation was thermophilic phase > second temperature-increasing phase > temperature-increasing phase > cooling phase. Forced aeration controlled the pile temperature and improved evaporation, making it the key factor influencing water loss during the process of sewage sludge bio-drying.  相似文献   

5.
The incidence and fate of pharmaceuticals in the water cycle impose a growing concern for the future reuse of treated water. Because of the recurrent global use of drugs such as Acetaminophen (APAP), an analgesic and antipyretic drug, they are often detected in wastewater treatment plant (WWTP) effluents, receiving surface waters and drinking water resources. In this study, the removal of APAP has been demonstrated in a membrane bioreactor (MBR) fed with APAP as the sole carbon source. After 16 days of operation, at a hydraulic retention time (HRT) of 5 days, more than 99.9% removal was obtained when supplying a synthetic WWTP effluent with 100 μg APAP L−1. Batch experiments indicated no sorption of APAP to the biomass, no influence of the WWTP effluent matrix, and the capability of the microbial consortium to remove APAP at environmentally relevant concentrations (8.3 μg APAP L−1). Incubation with allylthiourea, an ammonia monooxygenase inhibitor, demonstrated that the APAP removal was mainly associated with heterotrophic bacteria and not with the ammonia-oxidizing bacteria. Two APAP degrading strains were isolated from the MBR biomass and identified as Delftia tsuruhatensis and Pseudomonas aeruginosa. During incubation of the isolates, hydroquinone - a potentially toxic transformation product - was temporarily formed but further degraded and/or metabolized. These results suggest that the specific enrichment of a microbial consortium in an MBR operated at a high sludge age might be a promising strategy for post-treatment of WWTP effluents containing pharmaceuticals.  相似文献   

6.
The effect of both the type of primary treatment (hydrolitic up-flow sludge blanket (HUSB) reactor and conventional settling) and the flow regime (batch and continuous) on clogging development in subsurface flow constructed wetlands (SSF CWs) was studied. Clogging indicators (such as accumulated solids, hydraulic conductivity and drainable porosity) were determined in an experimental plant with three treatment lines. Correlations were encountered between the solids accumulated and both saturated hydraulic conductivity and drainable porosity reduction over time (74.5% and 89.2% of correlation, respectively). SSF CW implemented with a HUSB reactor accumulated ca. 30% lower sludge (1.9 kg DM/m2) than a system with a settler (2.5-2.8 kg DM/m2). However, no significant differences were recorded among treatment lines concerning hydraulic parameters (such as hydraulic conductivity or porosity). Root system development contributed to clogging. Accordingly, planted wetlands showed between 30% and 40% and 10% lower hydraulic conductivity and porosity reduction, respectively, than non-planted wetlands.  相似文献   

7.
A 5-month monitoring program was undertaken in South Wales in the UK to determine the fate of 55 pharmaceuticals, personal care products, endocrine disruptors and illicit drugs (PPCPs) in two contrasting wastewater plants utilising two different wastewater treatment technologies: activated sludge and trickling filter beds. The impact of treated wastewater effluent on the quality of receiving waters was also assessed.PPCPs were found to be present at high loads reaching 10 kg day−1 in the raw sewage. Concentrations of PPCPs in raw sewage were found to correlate with their usage/consumption patterns in Wales and their metabolism. The efficiency of the removal of PPCPs was found to be strongly dependent on the technology implemented in the wastewater treatment plant (WWTP). In general, the WWTP utilising trickling filter beds resulted in, on average, less than 70% removal of all 55 PPCPs studied, while the WWTP utilising activated sludge treatment gave a much higher removal efficiency of over 85%. The monitoring programme revealed that treated wastewater effluents were the main contributors to PPCPs concentrations (up to 3 kg of PPCPs day−1) in the rivers studied. Bearing in mind that in the cases examined here the WWTP effluents were also major contributors to rivers' flows (dilution factor for the studied rivers did not exceed 23 times) the effect of WWTP effluent on the quality of river water is significant and cannot be underestimated.  相似文献   

8.
Biological wastewater treatment plants (WWTP) are complex systems to assess. Many parameters are recorded daily in WWTP to monitor and control the treatment process, providing huge amounts of registered data. A combined approach of extracting information from the WWTP databases by statistical methods and from the sludge physico-chemical characterization was used here for a better understanding of the WWTP operation. The monitored parameters were analysed by multivariate statistical methods: Principal Components Analysis and multiple partial linear regression. The WWTP operational conditions determine the sludge characteristics. The bacterial activity of the sludge in terms of extra-cellular polymeric substances (EPS) production was assessed using size exclusion chromatography and the internal structure of sludge flocs was observed by confocal laser scanning microscopy. The diagnosis of three paper mill WWTP enabled the identification of an important EPS production, the presence of the nitrification process and the presence of PO43− nutrient in WWTP-A. These three main characteristics of WWTP-A were related with a systematically good sludge settling. In WWTP-B and C with bad settling, the bacterial activity was weak.  相似文献   

9.
The broad spectrum antimicrobial agents triclosan (TCS) and triclocarban (TCC) are widely used in many personal care products. Knowledge concerning the fate of these two compounds in different environmental matrices is scarce. In this study, the fate of TCS and TCC in soil following direct addition, or when residues were applied via either liquid municipal biosolids (LMB) or dewatered municipal biosolids (DMB) was investigated in laboratory dissipation experiments and under outdoor conditions using radioisotope methods. In laboratory incubations, 14C-TCC or 14C-TCS was added to microcosms containing a loam soil and the rate of 14CO2 accumulation and loss of solvent-extractable 14C were determined during incubation at 30 °C. Compared to when TCC or TCS was added directly to soil, both chemicals were mineralized more rapidly when applied in LMB, and both were mineralized more slowly when applied in DMB. The application matrix had no effect on the rate of removal of extractable residues. In field experiments, parent compounds were incorporated directly in soil, incorporated via LMB, or a single aggregate of amended DMB was applied to the soil surface. During the experiment soil temperatures ranged from 20 °C to 10 °C. Dissipation was much slower in the field than in the laboratory experiments. Removal of non-extractable residues was faster in the presence of LMB than the other treatments. Recovery of extractable and non-extractable residues suggested that there was little atmospheric loss of 14C. Triclocarban readily formed non-extractable residues with DMB whereas TCS did not. Overall, this study has identified that both the pathways and the kinetics of TCS and TCC dissipation in soil are different when the chemicals are carried in biosolids compared to when these chemicals are added directly to the soil.  相似文献   

10.
The fate of six phthalates: dimethyl phthalate (DMP), diethyl phthalate (DEP), di-n-butyl phthalate (DnBP), butyl benzyl phthalate (BBP), bis (2-ethylhexyl) phthalate (DEHP) and di-n-octyl phthalate (DnOP) was investigated throughout wastewater treatment processes in the wastewater treatment plant (WWTP) of Marne Aval (France). That plant treats wastewater from a highly populated area and was used as a pilot station for development of nitrification processes.In wastewater, at each step of treatment, DEHP was always the major compound (9 to 44 µg L− 1), followed by DEP (1.6 to 25 µg L− 1). Other phthalates averaged 1 µg L− 1 and DnOP remained close to the detection limit in nearly all cases.In sludge, the prevailing compound was also DEHP (72 µg g− 1) which is consistent with its tendency to get sorbed upon suspended matter (SM). DnOP came in third, in relation with its resistance to biodegradation.For the studied period, the removal efficiency of DEHP from wastewater was about 78%. That removal seemed to proceed rather from particle settling than from biodegradation. A highly significant correlation (p < 0.001) was found between DEHP and SM concentrations throughout treatment processes. The other compounds: DMP, DEP, DnBP and BBP, displayed satisfactory efficiencies ranging from 68 to over 96% for the lighter ones obviously more easily degraded.Under rainy periods, the plant discharge impact upon Marne River quality in terms of phthalate fluxes, appeared to be minor as compared to the amount brought by the storm overflows in the same area. Downstream of the WWTP discharge, DEHP concentration remained under the European norm for surface water (NQE: 1.3 µg L− 1).Our study documents the behaviour of phthalate esters throughout a WWTP which treatment device is used by 55% of the WWTP in the river Seine basin.  相似文献   

11.
Yu Tian  Yaobin Lu 《Water research》2010,44(20):6031-6040
Nutrient release is reported as one of the main disadvantage of sludge reduction induced by aquatic worm. In this study, a Static Sequencing Batch Worm Reactor (SSBWR) was proposed with novel structure of perforated panels, combined aeration system and cycle operation. Effective simultaneous nitrification and denitrification were obtained owing to the stratified sludge layer containing aerobic and anoxic microzone formed on each carrier during most of the operation time in the SSBWR, which created suitable conditions for remarkable sludge reduction and nutrient removal. The results showed that the total nitrogen (TN) concentration, NO3?–N + NO2?–N concentration and NH4+–N release could be reduced by 67.5%, 98.5% and 63.0%, respectively. And the soluble chemical oxygen demand (sCOD) released by sludge predation was also proved to provide a carbon source for denitrification leading to carbon release control and substantial cost savings. A schematic diagram of the stratified sludge layer and the mass balance of the nitrification–denitrification cycle were given, providing further insight into the nutrient (sCOD and nitrogen compounds) transformation during the worm predation in the SSBWR. For the mixed sludge liquid of 3000 mg TSS/L, 30 mg/L sCOD and 40 mg/L NO3?–N, the NO3?–N and NO2?–N came close to zero, and the sludge concentration, NH4+–N release and sCOD release was reduced by 33.6%, 63.0% and 72.5%, respectively, during 48 h’ predation.  相似文献   

12.
Jongmun Cha 《Water research》2009,43(9):2522-5552
The occurrence of the antimicrobials triclocarban (TCC) and triclosan (TCS) was investigated in agricultural soils following land application of biosolids using liquid chromatography-tandem mass spectrometry (LC-MS-MS) with negative ion multimode ionization. The method detection limits were 0.58 ng TCC/g soil, 3.08 ng TCC/g biosolids, 0.05 ng TCS/g soil and 0.11 ng TCS/g biosolids and the average recovery from all of the sample matrices was >95%. Antimicrobial concentrations in biosolids from three Michigan wastewater treatment plants (WWTPs) ranged from 4890 to 9280 ng/g, and from 90 to 7060 ng/g, for TCC and TCS respectively. Antimicrobial analysis of soil samples, collected over two years, from ten agricultural sites previously amended with biosolids, indicated TCC was present at higher concentrations (1.24-7.01 ng/g and 1.20-65.10 ng/g in 2007 and 2008) compared to TCS (0.16-1.02 ng/g and from the method detection limit, <0.05-0.28 ng/g in 2007 and 2008). Soil antimicrobial concentrations could not be correlated to any soil characteristic, or to the time of last biosolids application, which occurred in either 2003, 2004 or 2007. To our knowledge, our data represent the first report of TCC, and the first comparison of TCC and TCS concentrations, in biosolids-amended agricultural soils. Such information is important because approximately 50% of US biosolids are land applied, therefore, any downstream effects of either antimicrobial are likely to be widespread.  相似文献   

13.
Norovirus (NoV), the leading cause of adult non-bacterial gastroenteritis can be commonly detected in wastewater but the extent of NoV removal provided by wastewater treatment plants (WWTPs) is unclear. We monitored a newly commissioned WWTP with UV disinfection on a weekly basis over a six month period for NoV using RT-qPCR and for FRNA bacteriophage GA using both RT-qPCR (total concentration) and a plaque assay (infectious concentration). Mean concentrations of NoV GI and GII in influent wastewater were reduced by 0.25 and 0.41 log10 genome copies 100 ml−1, respectively by the WWTP. The mean concentration of total FRNA bacteriophage GA was reduced by 0.35 log genome copies 100 ml−1 compared to a reduction of infectious FRNA bacteriophage GA of 2.13 log PFU 100 ml−1. A significant difference between concentrations of infectious and total FRNA bacteriophage GA was observed in treated, but not in untreated wastewaters. We conclude that RT-qPCR in isolation underestimates the reduction of infectious virus during wastewater treatment. We further compared the concentrations of infectious virus in combined sewer overflow (CSO) and UV treated effluents using FRNA bacteriophage GA. A greater percentage (98%) of infectious virus is released in CSO discharges than UV treated effluent (44%). Following a CSO discharge, concentrations of NoV GII and infectious FRNA bacteriophage GA in oysters from less than the limit of detection to 3150 genome copies 100 g−1 and 1050 PFU 100 g−1 respectively.  相似文献   

14.
Using a completely mixed, continuously operated, lightly loaded, laboratory activated sludge system, the toxic effects of cupric, chromic and chromate ions under conditions of shock loading were observed. These were determined with the aid of a total carbon analyzer and simple mass balance techniques in terms of conversion of the organic nutrient fed. The distribution of the metal ion between aqueous solution and suspended solids was measured using atomic absorption spectrophotometry. Toxic effects were in the order: Cu2+ > CrO42? > Cr3+ while the reductions in conversion were 90, 50 and 20 per cent, respectively, for concentrations of 5 ppm metal ion. Cupric ion toxicity was directly proportional to the weight of copper absorbed per unit mass of suspended matter within the total copper concentration range (0–5.5 ppm) studied. This toxicity decreased markedly with increased suspended solids concentration: an 80 per cent decrease in conversion at 210 ppm suspended solids was reduced to a negligible quantity (3 per cent) by increasing the suspended solids to 4000 ppm. At 210 ppm suspended solids, 34 per cent of the added copper was removed by the sludge in 7 h.The results of this work suggest that the toxic effect of metal ions on a sewage plant activated sludge system could be reduced by rapidly increasing the suspended solids concentration, possibly by the addition of dried sludge. It is also implied that the effect on dilute systems such as lagoons would be much greater because of the low suspended solids.This work supports a mechanism involving rapid adsorption of the cupric ion by both viable and dead sludge followed by a slower rate determining step resulting in the toxic effect. The first order rate constant for substrate utilization was found to be (1.07 ± 0.6) h?1.  相似文献   

15.
The kinetics of oxidation and disinfection processes during ozonation in a full-scale reactor treating secondary wastewater effluent were investigated for seven ozone doses ranging from 0.21 to 1.24 g O3 g−1 dissolved organic carbon (DOC). Substances reacting fast with ozone, such as diclofenac or carbamazepine (kP,O3 > 104 M−1 s−1), were eliminated within the gas bubble column, except for the lowest ozone dose of 0.21 g O3 g−1 DOC. For this low dose, this could be attributed to short-circuiting within the reactor. Substances with lower ozone reactivity (kP,O3 < 104 M−1 s−1) were only fully eliminated for higher ozone doses.The predictions of micropollutant oxidation based on coupling reactor hydraulics with ozone chemistry and reaction kinetics were up to a factor of 2.5 higher than full-scale measurements. Monte Carlo simulations showed that the observed differences were higher than model uncertainties. The overestimation of micropollutant oxidation was attributed to a protection of micropollutants from ozone attack by the interaction with aquatic colloids. Laboratory-scale batch experiments using wastewater from the same full-scale treatment plant could predict the oxidation of slowly-reacting micropollutants on the full-scale level within a factor of 1.5. The Rct value, the experimentally determined ratio of the concentrations of hydroxyl radicals and ozone, was identified as a major contribution to this difference.An increase in the formation of bromate, a potential human carcinogen, was observed with increasing ozone doses. The final concentration for the highest ozone dose of 1.24 g O3 g−1 DOC was 7.5 μg L−1, which is below the drinking water standard of 10 μg L−1. N-Nitrosodimethylamine (NDMA) formation of up to 15 ng L−1 was observed in the first compartment of the reactor, followed by a slight elimination during sand filtration. Assimilable organic carbon (AOC) increased up to 740 μg AOC L−1, with no clear trend when correlated to the ozone dose, and decreased by up to 50% during post-sand filtration. The disinfection capacity of the ozone reactor was assessed to be 1-4.5 log units in terms of total cell counts (TCC) and 0.5 to 2.5 log units for Escherichia coli (E. coli). Regrowth of up to 2.5 log units during sand filtration was observed for TCC while no regrowth occurred for E. coli. E. coli inactivation could not be accurately predicted by the model approach, most likely due to shielding of E. coli by flocs.  相似文献   

16.
A novel process termed as bioevaporation was established to completely evaporate wastewater by metabolic heat released from the aerobic microbial degradation of the organic matters contained in the highly concentrated organic wastewater itself. By adding the glucose solution and ground food waste (FW) into the biodried sludge bed, the activity of the microorganisms in the biodried sludge was stimulated and the water in the glucose solution and FW was evaporated. As the biodegradable volatile solids (BVS) concentration in wastewater increased, more heat was produced and the water removal ratio increased. When the volatile solids (VS) concentrations of both glucose and ground FW were 120 g L−1, 101.7% and 104.3% of the added water was removed, respectively, by completely consuming the glucose and FW BVS. Therefore, the complete removal of water and biodegradable organic contents was achieved simultaneously in the bioevaporation process, which accomplished zero-discharge treatment of highly concentrated organic wastewater.  相似文献   

17.
In full-scale wastewater treatment systems, phosphorus removal typically occurs together with nitrogen removal. Nitrite, an intermediate of both the nitrification and denitrification processes, can accumulate in the reactor. The inhibitory effect of nitrite/free nitrous acid (FNA) on the aerobic metabolism of poly-phosphate accumulating organisms (PAOs) is investigated. A culture highly enriched (90 ± 5%) in Candidatus “Accummulibacter phosphatis”, a well-known PAO, was used to perform a series of batch experiments at various nitrite and pH levels. FNA was found to inhibit all key aerobic metabolic processes performed by PAOs, namely PHA oxidation, phosphate uptake, glycogen replenishment and growth. The inhibitory effect on the anabolic processes (growth, phosphate uptake and glycogen production) was much stronger than that on the catabolic processes (PHA oxidation). 50% inhibition on all anabolic processes occurred at FNA concentrations of approximately 0.5 × 10?3 mg HNO2–N/L (equivalent to 2.0 mg NO2?–N/L at pH 7.0), while full inhibition occurred at FNA concentrations of approximately 6.0 × 10?3 mg HNO2–N. These concentrations could be found in full-scale wastewater treatment systems that achieve nitrogen removal via the nitrite pathway. In comparison, PHA oxidation remained at 40–50% of the highest rate at FNA concentrations in the range 2.0 × 10?3–10.0 × 10?3 mg HNO2–N/L. Interestingly, PAOs were able to reduce nitrite under aerobic conditions (DO ≈ 3 mg/L), with the rate increasing substantially with the FNA concentration. The inhibition on phosphate uptake was found to be reversible.  相似文献   

18.
Cassidy DP  Belia E 《Water research》2005,39(19):4817-4823
The formation and performance of granular sludge was studied in an 8 l sequencing batch reactor (SBR) treating an abattoir (slaughterhouse) wastewater. Influent concentrations averaged 1520 mg l−1 volatile suspended solids (VSS), 7685 mg l−1 Chemical oxygen demand (COD), 1057 mg l−1 total kjeldahl nitrogen (TKN), 217 mg l−1 total P. The COD loading was 2.6 kg m−3 d−1. The SBR was seeded with flocculating sludge from a SBR with an 1 h settle time, but granules developed within 4 days by reducing the settle time to 2 min. The SBR cycle also had 120 min mixed (anaerobic) fill, 220 min aerated react, and 18 min draw/idle. The granules had a mean diameter of 1.7 mm, a specific gravity of 1.035, a density of 62 g VSS l−1, a zone settling velocity (ZSV) of 51 m h−1, and a sludge volume index (SVI) of 22 ml g−1. Without optimizing process conditions, removal of COD and P were over 98%, and removal of N and VSS were over 97%. Nitrification and denitrification occurred simultaneously during react. The results indicate that conventional SBRs treating wastewaters with flocculating sludge can be converted to granular SBRs by reducing the settle time.  相似文献   

19.
Cooking is recognized as an important source of particulate pollution in indoor and outdoor environments. We conducted more than 100 individual experiments to characterize the particulate and non‐methane organic gas emissions from various cooking processes, their reaction rates, and their secondary organic aerosol yields. We used this emission data to develop a box model, for simulating the cooking emission concentrations in a typical European home and the indoor gas‐phase reactions leading to secondary organic aerosol production. Our results suggest that about half of the indoor primary organic aerosol emission rates can be explained by cooking. Emission rates of larger and unsaturated aldehydes likely are dominated by cooking while the emission rates of terpenes are negligible. We found that cooking dominates the particulate and gas‐phase air pollution in non‐smoking European households exceeding 1000 μg m?3. While frying processes are the main driver of aldehyde emissions, terpenes are mostly emitted due to the use of condiments. The secondary aerosol production is negligible with around 2 μg m?3. Our results further show that ambient cooking organic aerosol concentrations can only be explained by super‐polluters like restaurants. The model offers a comprehensive framework for identifying the main parameters controlling indoor gas‐ and particle‐phase concentrations.  相似文献   

20.
Increasing concern about the fate of 17α-ethinylestradiol (EE2) in the environment stimulates the search for alternative methods for wastewater treatment plant (WWTP) effluent polishing. The aim of this study was to establish an innovative and effective biological removal technique for EE2 by means of a nitrifier enrichment culture (NEC) applied in a membrane bioreactor (MBR). In batch incubation tests, the microbial consortium was able to remove EE2 from both a synthetic minimal medium and WWTP effluent. A maximum EE2 removal rate of 9.0 μg EE2 g−1 biomass-VSS h−1 was achieved (>94% removal efficiency). Incubation of the heterotrophic bacteria isolated from the NEC did not result in a significant EE2 removal, indicating the importance of nitrification as driving force in the mechanism. Application of the NEC in a MBR to treat a synthetic influent with an EE2 concentration of 83 ng EE2 L−1 resulted in a removal efficiency of 99% (loading rates up to 208 ng EE2 L−1 d−1; membrane flux rate: 6.9 L m−2 h−1). Simultaneously, complete nitrification was achieved at an optimal ammonium influent concentration of 1.0 mg NH4+-N L−1. This minimal NH4+-N input is very advantageous for effluent polishing since the concomitant effluent nitrate concentrations will be low as well and it offers opportunities for the nitrifying MBR as a promising add-on technology for WWTP effluent polishing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号