首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The lithium-doped phases Gd1.7Li0.3Zr2O6.7 and Gd2Zr1.7Li0.3O6.55 with a pyrochlore structure were prepared by the modified Pechini method using citric acid and glycerol. Monitoring of the lithium content by using a nuclear microanalysis showed that a significant loss of lithium occurred after heat treatment above 1200 °C. Dense ceramics with a stoichiometric lithium content can be prepared by a low temperature microwave sintering (1100 °C). The introduction of lithium in the Gd-sublattice was accompanied by a decrease in the unit cell parameter (a = 10.5208 (1) Å vs 10.5346 (2) Å for Gd2Zr2O7) and during doping at the Zr-sites with lithium, the cell parameter increased (10.5720 (1) Å). The doping in both cases led to an increase in the free cell volume. The impedance spectroscopy results showed that the bulk conductivity can be enhanced by the Li+-doping at the Gd3+-site by almost an order of magnitude. The sample Gd2Zr1.7Li0.3O6.55 had a conductivity lower than that of Gd1.7Li0.3Zr2O6.7 due to the possible trapping of oxygen vacancies by a high-charged acceptor defect LiZr???. The conductivity?pO2 measurements showed that the Li-containing phase was a pure oxide-ion conductor at T < 800 °C.  相似文献   

2.
《Ceramics International》2017,43(3):3015-3024
An optimal occupation of U4+ and U6+ in Gd2Zr2O7 is necessary for a really high immobilization capacity of U3O8 in Gd2Zr2O7 based waste forms. Based on four kinds of occupation methods, a series of U3O8-doped Gd2Zr2O7 compositions have been synthesized. The effects of U3O8 content on the phase and microstructure evolution of Gd2Zr2O7 pyrochlore waste forms were investigated. Detailed XRD analysis show that the four sets of samples exhibit a single defect fluorite structure within the range of 0<x≤0.4, 0<x≤0.66, 0<x≤0.6 and 0<x≤1, respectively. The highest solubility of U3O8 is about 82.29 wt% when the occupation design (U4+ and U6+ substitute for Gd and Zr, respectively) was employed. It was found that the cell parameters of compounds in Set A (Gd2–3x(U4+xU6+2x)Zr2O7+7x/2) decrease with increasing x, while those of the other compositions increase. Moreover, the uranium are almost homogeneously distributed in all samples.  相似文献   

3.
Efficiency of a gas turbine can be increased by increasing the operating temperature. Yttria‐stabilized zirconia (YSZ) is the standard thermal barrier coating (TBC) material used in gas turbine applications. However, above 1200°C, YSZ undergoes significant sintering and CMAS (calcium magnesium alumino silicate) infiltration. New ceramic materials of rare earth zirconate composition such as gadolinium zirconate (GZ) are promising candidates for thermal barrier coating applications (TBC) above 1200°C. Suspension plasma spray of single‐layer YSZ, double‐layer GZ/YSZ, and a triple‐layer TBC comprising denser GZ on top of GZ/YSZ TBC was attempted. The overall coating thickness in all three TBCs was kept the same. Isothermal oxidation performance of the three TBCs along with bare substrate and bond‐coated substrate was investigated for time intervals of 10 h, 50 h, and 100 h at 1150°C in air environment. Weight gain/loss analysis was carried out by sensitive weighing balance. Microstructural analysis was carried out using scanning electron microscopy (SEM). As‐sprayed single‐layer YSZ and double‐layer GZ/YSZ showed columnar microstructure, whereas the denser layer in the triple‐layer TBC was not columnar. Phase analysis of the top surface of as‐sprayed TBCs was carried out using XRD. Porosity measurements were made by water intrusion method. In the weight gain analysis and SEM analysis, multilayered TBCs showed lower weight gain and lower TGO thickness compared to single‐layer YSZ.  相似文献   

4.
A series of Nd and Ce co-doped Gd2-xNdxZr2-yCeyO7 (0.0 ≤ x, y ≤ 2.0) ceramics were rapidly fabricated through spark plasma sintering (SPS) within 3?min. The effects of Nd and Ce contents on the phase composition, lattice parameter, active modes, microtopography and microstructure have been investigated in detail. XRD studies reveal that the compositions corresponding to 0.0 ≤ y ≤ 1.0 show a single phase and beyond 1.0 exhibit multiphase. The lattice parameters increase with elevated Nd and Ce content. The grains are densely packed on each other with cube-like shape, and the elements are almost homogeneously distributed in the compound. This synthetic method provides a simple pathway for the preparation of highly densified single phase ceramic at 1600–1700 ℃ for 3?min under pressure of 80?MPa.  相似文献   

5.
以F127作为模板剂,通过溶剂蒸发诱导自组装法合成了具有有序孔结构、孔径分布均匀的介孔锆酸镧,系统研究了不同煅烧温度处理后介孔锆酸镧的相组成、比表面积、孔径及其分布以及微观结构。结果表明,经800℃处理后,样品开始晶化,完全晶化的样品中仅含锆酸镧相。经600℃煅烧后样品的比表面积为136 m2/g,孔体积为0.14 cm3/g,800℃煅烧后比表面积仍达90 m2/g,显示出较好的热稳定性。随着煅烧温度进一步升高,样品的比表面积和孔体积急剧减小,表明该方法制备的介孔锆酸镧最高耐热温度为800℃。透射电子显微镜观察发现,400℃去除模板后,样品具有有序介孔结构,预期其具有较好的催化性能。  相似文献   

6.
The electrochemical reduction of two lanthanides (neodymium Nd and gadolinium Gd) was investigated in the 800–950 °C temperature range on nickel and copper electrodes. These materials react with lanthanides (Ln) to form intermetallic compounds. The formation mechanism of the alloys was determined by coupling electrochemical techniques and Scanning Electron Microscopy (SEM) after electrolyses runs; this also allowed the identification of the binary compounds formed. In addition, from the electrochemical results, we calculated the Gibbs energies of Nd/Ni, Gd/Ni, Gd/Cu and Nd/Cu.  相似文献   

7.
《Ceramics International》2015,41(4):5309-5317
A novel soft chemistry route was developed to synthesize Y2HfxTi2−xO7 (0≤x≤2.0) oxide solid solution. An aqueous solution containing reactants was produced to ensure the combustion reaction taking place at the molecular level. A suite of characterization techniques, including X-ray diffraction, Raman, transmission electron spectroscopy, as well as X-ray absorption near edge structure (XANES), is employed to investigate the structural and phase changes of the series. Both X-ray and electron diffraction patterns show that the Y2HfxTi2−xO7 system undergoes a clear composition-induced phase transition from ordered pyrochlore to disordered defect-fluorite at x~1.5. On the other hand, Raman and XANES spectra reveal a gradual evolution of the local structure with the substitution of Hf for Ti.  相似文献   

8.
The microstructure of following thermal barrier coatings (TBC) was characterised in this paper: monolayer coatings Nd2Zr2O7 and 8YSZ; a double ceramic layered (DCL) coating. Coatings were characterised by thicknesses that did not exceed 300 μm and porosities of approx. 5%. The chemical and phase composition analysis of the DCL layers revealed an external Nd2Zr2O7 ceramic layer approx. 80 μm thick, a transitional zone approx. 120 μm thick and an internal 8YSZ layer 100 μm thick. For the case of the monolayer coating, the Nd2Zr2O7 pyrochlore phase was the only one-phase component. The surface topography of both TBC systems was typical for plasma sprayed coatings, and compressive stress state had a value of approx. 5–10 MPa. Measurements of the thermal parameters, i.e., thermal diffusivity, point to considerably better insulative properties for both new types of layers when compared to the standard 8YSZ layers.  相似文献   

9.
In the present work, gadolinium zirconate (Gd2Zr2O7) coatings have been developed on Inconel-718 substrates by electron beam physical vapor deposition (EB-PVD) technique. The structural, morphological and mechanical properties as a function of substrate temperature have been investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), nanoindentation and scratch tests. XRD analysis revealed that the coatings showed cubic defect fluorite phase, and no secondary phase formation was observed in the coatings during deposition. The decrease in the lattice constant of the fluorite phase with increasing deposition temperature was explained on the basis of strain relaxation and vacancy concentration. Increased surface roughness of the coatings has been found with increasing substrate temperature as a result of increased crystallite size. An improved coating adhesion achieved for the coating deposited at higher substrate temperature of 973?K was confirmed by scratch test. Nanoindentation measurements indicated higher hardness (7.7?GPa) and resistance to plastic deformation and better capability to accommodate deformation energy for the coatings prepared at higher deposition temperature.  相似文献   

10.
Chemical durability of lanthanide zirconates (A2Zr2O7) (A = La-Yb) under near-field environments is important for evaluating their application as potential nuclear waste forms. In this work, A2Zr2O7 (A = La-Yb) are synthesized by spark plasma sintering with controlled microstructure and their chemical durability are evaluated in a nitric acid solution (pH = 1). Scanning transmission electron microscopy analysis reveals an amorphous passivation film either enriched with Zr or lanthanide. The complex chemistry of the passivation films can be correlated with a transition in corrosion mechanisms from a preferential release of lanthanide in La2Zr2O7 to a preferential release of Zr in Er2Zr2O7 and Yb2Zr2O7. These results suggest a dominant mechanism of incongruent dissolution and surface reorganization for the formation of passivation films. Strong correlations are identified between the leaching rates and cation ionic size, ionic potential, electronegativity differences between A-site cation and Zr, and bonding valence sum of oxygen, suggesting important impacts of structural and bonding characteristics in controlling chemical durability of lanthanide zirconates.  相似文献   

11.
(Gd1−xYbx)2Zr2O7 compounds were synthesized by solid reaction. Yb2O3 doped Gd2Zr2O7 exhibited lower thermal conductivities and higher thermal expansion coefficients (TECs) than Gd2Zr2O7. The TECs of (Gd1−xYbx)2Zr2O7 ceramics increased with increasing Yb2O3 contents. (Gd0.9Yb0.1)2Zr2O7 (GYbZ) ceramic exhibited the lowest thermal conductivity among all the ceramics studied, within the range of 0.8–1.1 W/mK (20–1600 °C). The Young's modulus of GYbZ bulk is 265.6 ± 11 GPa. GYbZ/YSZ double-ceramic-layer thermal barrier coatings (TBCs) were prepared by electron beam physical vapor deposition (EB-PVD). The coatings had an average life of more than 3700 cycles during flame shock test with a coating surface temperature of ∼1350 °C. Spallation failure of the TBC occurred by delamination cracking within GYbZ layer, which was a result of high temperature gradient in the GYbZ layer and low fracture toughness of GYbZ material.  相似文献   

12.
《Ceramics International》2017,43(6):5041-5046
The preparation of 80 nm, 140 nm, and 200 nm La2Zr2O7 (LZO) multilayers on biaxially textured Ni-5 at% W (Ni5W) substrates using chemical solution deposition (CSD) was studied. The performance of multilayers was studied by means of X-Ray Diffraction (XRD), Electron Back Scattering Diffraction (EBSD), and Auger Electron Spectrometry (AES). The as-grown buffer layers exhibit sharp texture with texture components (0°−10°) about 96.7%, 98.9%, and 98.8%, respectively. The full-width at half maximum (FWHM) values of the ω-scans decreases with the number of layers, close to that of Ni5W substrates. The films exhibit dense, smooth, crack-free surface with a roughness Ra 3–5 nm, and sufficient barrier function against metal ionic diffusion from Ni5W substrates into buffer layers. The performance of LZO multilayers was confirmed by YBa2Cu3O7−x (YBCO) films deposited by CSD technology.  相似文献   

13.
Ln2B2O7 (Ln=Sm, Eu, Gd and Tb; B=Zr or Ti) with pyrochlore structure was prepared by sol–gel method for the high-temperature catalytic combustion. The crystal structure of Ln2B2O7 was identified by XRD and their surface area was about 4 m2/g after calcinations at 1200 °C. Catalytic activity of methane combustion was observed for Ln2Zr2O7 series and the best catalyst was Sm2Zr2O7. Its relative reaction rate per unit surface area at 600 °C was 2 cm3/m2 min, which was twice higher than that of Mn-substituted Sr hexaaluminate. From surface analysis by XPS, the low binding energy of each Ln element of Ln2Zr2O7 compared to that of Ln2Ti2O7, gave the catalytic activity of methane combustion.  相似文献   

14.
La2Zr2O7 is a promising thermal barrier coating (TBC) material. In this work, La2Zr2O7 and 8YSZ-layered TBC systems were fabricated. Thermal properties such as thermal conductivity and coefficient of thermal expansion were investigated. Furnace heat treatment and jet engine thermal shock (JETS) tests were also conducted. The thermal conductivities of porous La2Zr2O7 single-layer coatings are 0.50–0.66?W?m?1?°C?1 at the temperature range from 100 to 900°C, which are 30–40% lower than the 8YSZ coatings. The coefficients of thermal expansion of La2Zr2O7 coatings are about 9–10?×?10?6?°C?1 at the temperature range from 200 to 1200°C, which are close to those of 8YSZ at low temperature range and about 10% lower than 8YSZ at high temperature range. Double-layer porous 8YSZ plus La2Zr2O7 coatings show a better performance in thermal cycling experiments. It is likely because porous 8YSZ serves as a buffer layer to release stress.  相似文献   

15.
Proper disposal of nuclear waste with multi-nuclides and multi-valence is still challenge. A series of (Mo, Ru, Pd, Zr) tetra-doped Gd2Zr2O7 ceramics were studied to understand the microstructure and performance evolution of nuclear waste forms that immobilised simulated waste after trialkyl phosphine oxides (TRPO) process. The structure of as-obtained samples were tested by X-ray diffraction, Raman, scanning electron microscope, electron back-scattered diffraction, and energy-dispersive X-ray spectroscopy, while the mechanical and chemical performance were characterised by Vickers hardness and aqueous leaching method. The results indicate that the mechanical behaviour are closely linked with the phase structure, and the highest Vickers hardness is obtained at the phase turning point. The leaching results show that the normalised leaching rate (LR) of the doped elements decrease in the order of Mo, Ru, Pd, Zr. After reaching equilibrium, their LR are as low as 4.12?×?10?4?g·m?2·d?1, 1.50?×?10?5?g·m?2·d?1, 1.30?×?10?5?g·m?2·d?1, and 2.09?×?10?7?g·m?2·d?1, respectively.  相似文献   

16.
Herein, the phase evolution, densification and grain growth process of the high entropy ceramics during flash sintering were systematically characterized and quantified to understand the microstructural evolution for the first time. It was demonstrated that the densification rate of (La0.2Nd0.2Sm0.2Eu0.2Gd0.2)2Zr2O7 by flash sintering in this work was generally around 60 times that of conventional sintering at 1600 °C, while the grain growth rate by flash sintering was only around 1.5–6 times that of conventional sintering, indicating that grain growth was suppressed during flash sintering. The grain growth mechanisms by flash sintering and conventional sintering could be both attributed to surface diffusion and volume diffusion. In addition, the flash sintered high-entropy ceramics as promising immobilization materials for high-level radioactive waste (HLW) exhibited excellent aqueous durability with normalized leaching rates of Nd, Gd and Zr approximately 10?6~10?7 g m?2 d?1 after 42 days, which were much lower than most reported pyrochlore materials.  相似文献   

17.
Gd2Zr2O7 nanoceramics were fabricated using pressureless sintering method, in which the nanopowders were synthesized via solvothermal approach. The effects of starting powders on grain growth and densification during sintering of ceramics were revealed. Two distinct pressureless sintering methods were investigated, including conventional and two-step sintering. The sample grain size increases abruptly as sintering temperature increases during conventional sintering. In contrast, in two-step sintering, abnormal or discontinuous grain growth was suppressed in the second step, leading to Gd2Zr2O7 nanoceramics formation (average grain size 83 nm, relative density ∼93%). Such distinct behaviors may originate from the interplay between kinetic factors such as grain boundary migration and diffusion. Moreover, suppression of grain growth and promotion of densification in the two-step sintering are mainly due to dominant role of grain boundary diffusion during the second-step sintering process.  相似文献   

18.
《Ceramics International》2016,42(15):16584-16588
3.5 mol% Er2O3 stabilized ZrO2 (ErSZ) and Gd2Zr2O7 powders were produced by a chemical co-precipitation and calcination method, and ErSZ was used to toughen Gd2Zr2O7. The phase structure, toughness and thermal conductivities of ErSZ toughened Gd2Zr2O7 ceramics were investigated. When the ErSZ content was below 15 mol%, the compound consisted of pyrochlore phase, the ordering degree of which decreased with the increase of the ErSZ content. High ErSZ doping led to the formation of metastable tetragonal (t′) phase in the compound. The addition of ErSZ in Gd2Zr2O7 benefited its toughness, mainly attributable to the presence of t′ phase in the compound. With the increase of the ErSZ content in the compound, the thermal conductivity first decreased and then showed an upward tendency, and 10 mol% ErSZ toughened Gd2Zr2O7 exhibited the lowest thermal conductivity.  相似文献   

19.
Cation and anion disordering affect the structural and electronic properties of the isometric A2B2O7 pyrochlore materials. Here, we report a study on the structural response of La2Zr2O7 at two different temperatures (300 K and ~88 K) as a function of ion fluence (1 × 1013, 5 × 1013, and 1 × 1014 ions/cm2). The effect of ion fluence and irradiation temperature on the structural properties have been investigated using the grazing angle x-ray diffraction, Raman spectroscopy, and high-resolution transmission electron microscopy. GIXRD results confirmed that the weakening/broadening of the diffraction peaks and lattice volume expansion increases monotonically as a function of ion fluence at both the temperatures and are more pronounced at ~88 K. The cation and anion disordering appear to be ion fluence and irradiation temperature-dependent. Raman spectroscopy shows that the atomic disordering is more pronounced with enhanced ion fluence and revealed the involvement of the X48f parameter in the enhancement of disordering in the system. The HRTEM analysis revealed that the deterioration in the atomic ordering (amorphization) is significantly more pronounced at ~88 K. The qualitative analysis of cation/anion disordering and structural deformation revealed that irradiation parameters play a crucial role in developing and altering the properties of the pyrochlore materials for the technological applications.  相似文献   

20.
Thin Gd2O3 films with a thickness of about 150 nm were deposited by pulsed layer deposition on polycrystalline CeO2 substrates to study the structural evolution of the Ce1−xGdxO2−x/2 system with respect to phase formation and cation interdiffusion in the temperature range between 986 °C and 1270 °C. Transmission electron microscopy combined with quantitative energy dispersive X-ray spectroscopy was applied to study the microstructure and to obtain composition profiles across the Gd2O3/CeO2-interface. Gd2O3 was observed to occur in the bixbyite structure up to 1175 °C. The fluorite and the bixbyite phase are found at intermediate compositions without any indication for a miscibility gap. Interdiffusion coefficients were obtained from Gd2O3/CeO2-concentration profiles on the basis of the diffusion-couple solution of the diffusion equation. The activation enthalpy and frequency factor of the diffusion coefficient were derived assuming an Arrhenius-type behavior in the investigated temperature range.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号