共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, an automatic system is presented for target recognition using target echo signals of High Resolution Range (HRR) radars. This paper especially deals with combination of the feature extraction and classification from measured real target echo signal waveforms by using X-band pulse radar. The past studies in the field of radar target recognition have shown that the learning speed of feedforward neural networks is in general much slower than required and it has been a major disadvantage. There are two key reasons forth is status of feedforward neural networks: (1) the slow gradient-based learning algorithms are extensively used to train neural networks, and (2) all the parameters of the networks are tuned iteratively by using such learning algorithms (Feng et al., 2009, Huang and Siew, 2004, Huang and Chen, 2007, Huang and Chen, 2008, Huang et al., 2006, Huang et al., 2010, Huang et al., 2004, Huang et al., 2005, Huang et al., 2012, Huang et al., 2008, Huang and Siew, 2005, Huang et al., 2011, Huang et al., 2006, Huang et al., 2006a, Huang et al., 2006b, Lan et al., 2009, Li et al., 2005, Liang et al., 2006, Liang et al., 2006, Rong et al., 2009, Wang and Huang, 2005, Wang et al., 2011, Yeu et al., 2006, Zhang et al., 2007, Zhu et al., 2005). To resolve these disadvantages of feedforward neural networks for automatic target recognition area in this paper suggested a new learning algorithm called extreme learning machine (ELM) for single-hidden layer feedforward neural networks (SLFNs) (Feng et al., 2009, Huang and Siew, 2004, Huang and Chen, 2007, Huang and Chen, 2008, Huang et al., 2006, Huang et al., 2010, Huang et al., 2004, Huang et al., 2005, Huang et al., 2012, Huang et al., 2008, Huang and Siew, 2005, Huang et al., 2011, Huang et al., 2006, Huang et al., 2006a, Huang et al., 2006b, Lan et al., 2009, Li et al., 2005, Liang et al., 2006, Liang et al., 2006, Rong et al., 2009, Wang and Huang, 2005, Wang et al., 2011, Yeu et al., 2006, Zhang et al., 2007, Zhu et al., 2005) which randomly choose hidden nodes and analytically determines the output weights of SLFNs. In theory, this algorithm tends to provide good generalization performance at extremely fast learning speed. Moreover, the Discrete Wavelet Transform (DWT) and wavelet entropy is used for adaptive feature extraction in the time-frequency domain in feature extraction stage to strengthen the premium features of the ELM in this study. The correct recognition performance of this new system is compared with feedforward neural networks. The experimental results show that the new algorithm can produce good generalization performance in most cases and can learn thousands of times faster than conventional popular learning algorithms for feedforward neural networks. 相似文献
2.
A wavelet extreme learning machine 总被引:2,自引:0,他引:2
Shifei Ding Jian Zhang Xinzheng Xu Yanan Zhang 《Neural computing & applications》2016,27(4):1033-1040
Extreme learning machine (ELM) has been widely used in various fields to overcome the problem of low training speed of the conventional neural network. Kernel extreme learning machine (KELM) introduces the kernel method to ELM model, which is applicable in Stat ML. However, if the number of samples in Stat ML is too small, perhaps the unbalanced samples cannot reflect the statistical characteristics of the input data, so that the learning ability of Stat ML will be influenced. At the same time, the mix kernel functions used in KELM are conventional functions. Therefore, the selection of kernel function can still be optimized. Based on the problems above, we introduce the weighted method to KELM to deal with the unbalanced samples. Wavelet kernel functions have been widely used in support vector machine and obtain a good classification performance. Therefore, to realize a combination of wavelet analysis and KELM, we introduce wavelet kernel functions to KELM model, which has a mix kernel function of wavelet kernel and sigmoid kernel, and introduce the weighted method to KELM model to balance the sample distribution, and then we propose the weighted wavelet–mix kernel extreme learning machine. The experimental results show that this method can effectively improve the classification ability with better generalization. At the same time, the wavelet kernel functions perform very well compared with the conventional kernel functions in KELM model. 相似文献
3.
极端学习机以其快速高效和良好的泛化能力在模式识别领域得到了广泛应用,然而现有的ELM及其改进算法并没有充分考虑到数据维数对ELM分类性能和泛化能力的影响,当数据维数过高时包含的冗余属性及噪音点势必降低ELM的泛化能力,针对这一问题本文提出一种基于流形学习的极端学习机,该算法结合维数约减技术有效消除数据冗余属性及噪声对ELM分类性能的影响,为验证所提方法的有效性,实验使用普遍应用的图像数据,实验结果表明本文所提算法能够显著提高ELM的泛化性能。 相似文献
4.
Yuan Lan Zongjiang Hu Yeng Chai Soh Guang-Bin Huang 《Neural computing & applications》2013,22(3-4):417-425
Over the last two decades, automatic speaker recognition has been an interesting and challenging problem to speech researchers. It can be classified into two different categories, speaker identification and speaker verification. In this paper, a new classifier, extreme learning machine, is examined on the text-independent speaker verification task and compared with SVM classifier. Extreme learning machine (ELM) classifiers have been proposed for generalized single hidden layer feedforward networks with a wide variety of hidden nodes. They are extremely fast in learning and perform well on many artificial and real regression and classification applications. The database used to evaluate the ELM and SVM classifiers is ELSDSR corpus, and the Mel-frequency Cepstral Coefficients were extracted and used as the input to the classifiers. Empirical studies have shown that ELM classifiers and its variants could perform better than SVM classifiers on the dataset provided with less training time. 相似文献
5.
Face recognition based on extreme learning machine 总被引:2,自引:0,他引:2
Weiwei ZongAuthor VitaeGuang-Bin HuangAuthor Vitae 《Neurocomputing》2011,74(16):2541-2551
Extreme learning machine (ELM) is an efficient learning algorithm for generalized single hidden layer feedforward networks (SLFNs), which performs well in both regression and classification applications. It has recently been shown that from the optimization point of view ELM and support vector machine (SVM) are equivalent but ELM has less stringent optimization constraints. Due to the mild optimization constraints ELM can be easy of implementation and usually obtains better generalization performance. In this paper we study the performance of the one-against-all (OAA) and one-against-one (OAO) ELM for classification in multi-label face recognition applications. The performance is verified through four benchmarking face image data sets. 相似文献
6.
In order to solve the problems of unsatisfactory diagnosis performance and unstable model of conventional fault diagnosis methods for transformers, a new approach based on improved empirical wavelet transform (IEWT) and salp swarm algorithm (SSA) optimized kernel extreme learning machine (KELM) is proposed in this study. Firstly, IEWT is used to adaptively decompose the vibration signal to obtain a set of empirical wavelet functions (EWFs). Secondly, the first n-order components with high correlation coefficient are collected. Thirdly, the mean value, variance, kurtosis, refine composite multiscale entropy (RCMSE), and time-frequency entropy(TFE) of these n-order components are calculated to construct a fusion feature vector. Finally, a two-level diagnostic model based on SSA-KELM is established. The first-level of it is applied to identify normal and abnormal states, and the second-level is selected to identify fault categories in the abnormal states. The proposed method can effectively diagnose the existing fault categories in the training set and accurately identify the unknown categories of faults. Experimental results show that the proposed method can efficiently extract features of different vibration signals and identify the faults, with an average classification accuracy of 96.25%. It is better than other methods, such as wavelet packet energy spectrum analysis-KELM and EWT-fisher. 相似文献
7.
In this paper, we proposed the Dandelion Algorithm (DA), based on the behaviour of dandelion sowing. In DA, the dandelion is sown in a certain range based on dynamic radius. Meanwhile the dandelion has self-learning ability; it could select a number of excellent seeds to learn. We compare the proposed algorithm with other existing algorithms. Simulations show that the proposed algorithm seems much superior to other algorithms. Moreover, the proposed algorithm can be applied to optimise extreme learning machine (ELM), which has a very good classification and prediction capability. 相似文献
8.
9.
Neural Computing and Applications - Computational complexity and sample selection are two main factors that limited the performance of online sequential extreme learning machines (OS-ELMs). This... 相似文献
10.
提出一种利用极限学习机ELM的数据可视化方法,该方法利用多维尺度分析MDS、Pearson相关性、Spearman相关性代替常用的均方误差MSE实现高维数据投影到2-维平面的数据可视化。将所提方法与近期流行的随机邻域嵌入SNE及其改进的t-SNE方法对比,并通过局部连续元准则LCMC进行质量评测。结果表明:该方法的数据可视化结果及计算性能明显优于SNE及t-SNE方法;而在提出的三种学习规则中,基于MDS的学习规则效果最好。 相似文献
11.
针对极限学习机(extreme learning machine,ELM)隐节点不确定性导致的系统不稳定,以及对大型数据计算负担过重的问题,提出了基于自适应动量优化算法(adaptive and momentum method,AdaMom)的正则化极限学习机.算法主要思想是构造连续可微的目标函数,在梯度下降过程中计算自适应学习率,求自适应学习率与梯度乘积的指数加权平均值,通过迭代得到损失函数最小值对应的隐层输出权重矩阵.实验结果表明,在相同基准数据集的训练中,AdaMom-ELM算法具有非常良好的泛化性能和鲁棒性,提高了计算效率. 相似文献
12.
13.
14.
Balaha Hossam Magdy Ali Hesham Arafat Saraya Mohamed Badawy Mahmoud 《Neural computing & applications》2021,33(11):6325-6367
Neural Computing and Applications - Optical character recognition for the English text may be considered one of the most important research topics, whether, printed or handwritten. Although... 相似文献
15.
重点研究了极限学习机ELM对行为识别检测的效果。针对在线学习和行为分类上存在计算复杂性和时间消耗大的问题,提出了一种新的行为识别学习算法(ELM-Cholesky)。该算法首先引入了基于Cholesky分解求ELM的方法,接着依据在线学习期间核函数矩阵的更新特点,将分块矩阵Cholesky分解算法用于ELM的在线求解,使三角因子矩阵实现在线更新,从而得出一种新的ELM-Cholesky在线学习算法。新算法充分利用了历史训练数据,降低了计算的复杂性,提高了行为识别的准确率。最后,在基准数据库上采用该算法进行了大量实验,实验结果表明了这种在线学习算法的有效性。 相似文献
16.
17.
针对基于传统神经网络的变压器故障识别诊断方法存在网络收敛慢、易陷入局部极小点和网络参数难确定的缺点,提出了一种基于极限学习机的电力变压器故障快速识别方法。该方法以变压器油中用于故障类型分析的5种主要溶解气体含量作为输入特征量,5种常见变压器状态作为输出量建立分类识别模型。实验结果显示,该方法的识别准确率比支持向量机高12.5%,识别速度是支持向量机的2.6倍,比概率神经网络快5.5倍以上,表明该方法对变压器故障的识别快速而有效。 相似文献
18.
19.
20.
Das Dibyasundar Nayak Deepak Ranjan Dash Ratnakar Majhi Banshidahar 《Multimedia Tools and Applications》2019,78(14):19495-19523
Multimedia Tools and Applications - Extreme learning machine (ELM), a randomized learning paradigm for single hidden layer feed-forward network, has gained significant attention for solving... 相似文献