首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Journal of Process Control》2014,24(8):1247-1259
In the last years, the use of an economic cost function for model predictive control (MPC) has been widely discussed in the literature. The main motivation for this choice is that often the real goal of control is to maximize the profit or the efficiency of a certain system, rather than tracking a predefined set-point as done in the typical MPC approaches, which can be even counter-productive. Since the economic optimal operation of a system resulting from the application of an economic model predictive control approach drives the system to the constraints, the explicit consideration of the uncertainties becomes crucial in order to avoid constraint violations. Although robust MPC has been studied during the past years, little attention has yet been devoted to this topic in the context of economic nonlinear model predictive control, especially when analyzing the performance of the different MPC approaches. In this work, we present the use of multi-stage scenario-based nonlinear model predictive control as a promising strategy to deal with uncertainties in the context of economic NMPC. We make a comparison based on simulations of the advantages of the proposed approach with an open-loop NMPC controller in which no feedback is introduced in the prediction and with an NMPC controller which optimizes over affine control policies. The approach is efficiently implemented using CasADi, which makes it possible to achieve real-time computations for an industrial batch polymerization reactor model provided by BASF SE. Finally, a novel algorithm inspired by tube-based MPC is proposed in order to achieve a trade-off between the variability of the controlled system and the economic performance under uncertainty. Simulations results show that a closed-loop approach for robust NMPC increases the performance and that enforcing low variability under uncertainty of the controlled system might result in a big performance loss.  相似文献   

2.
Nonlinear model predictive control (NMPC) has been popular in many applications, especially when constraint satisfaction is critical. However, due to plant-model mismatch and disturbances, robust NMPC generally faces three challenges: robust performance, real-time implementation, and stability. In this paper, we propose a parallelizable advanced-step multistage NMPC (as-msNMPC), which provides a non-conservative robust control solution that explicitly addresses two types of uncertainty: model parameters and unmeasured noise. The first type is attended to by incorporating scenario trees and the second by applying nonlinear programming (NLP) sensitivity. In addition, robust stability concepts have been discussed for both ideal multistage NMPC (ideal-msNMPC) and as-msNMPC. Under suitable assumptions, as-msNMPC has demonstrated input-to-state practical stability properties with the presence of two types of uncertainty. Lastly, the as-msNMPC framework has been applied to continuous stirred tank reactor (CSTR) and quad-tank case studies for tracking setpoints to demonstrate its performance in robustness and efficiency.  相似文献   

3.
Model predictive control (MPC) is a well-established controller design strategy for linear process models. Because many chemical and biological processes exhibit significant nonlinear behaviour, several MPC techniques based on nonlinear process models have recently been proposed. The most significant difference between these techniques is the computational approach used to solve the nonlinear model predictive control (NMPC) optimization problem. Consequently, analysis of NMPC techniques is often connected to the computational approach employed. In this paper, a theoretical analysis of unconstrained NMPC is presented that is independent of the computational approach. A nonlinear discrete-time, state-space model is used to predict the effects of future inputs on future process outputs. It is shown that model inverse, pole-placement, and steady-state controllers can be obtained by suitable selection of the control and prediction horizons. Moreover, the NMPC optimization problem can be modified to yield nonlinear internal model control (NIMC). The computational requirements of NIMC are considerably less than NMPC, but the NIMC approach is currently restricted to nonlinear models with well-defined and stable inverses. The NIMC controller is shown to provide superior servo and regulatory performance to a linear IMC controller for a continuous stirred tank reactor.  相似文献   

4.
Model Predictive Control (MPC) has recently found wide acceptance in the process industry, but existing design and implementation methods are restricted to linear process models. A chemical process, however, involves severe nonlinearity which cannot be ignored in practice. This paper aims to solve this nonlinear control problem by extending MPC to accommodate nonlinear models. It develops an analytical framework for nonlinear model predictive control (NMPC). It also offers a third-order Volterra series based nonparametric nonlinear modelling technique for NMPC design, which relieves practising engineers from the need for deriving a physical-principles based model first. An on-line realisation technique for implementing NMPC is then developed and applied to a Mitsubishi Chemicals polymerisation reaction process. Results show that this nonlinear MPC technique is feasible and very effective. It considerably outperforms linear and low-order Volterra model based methods. The advantages of the developed approach lie not only in control performance superior to existing NMPC methods, but also in eliminating the need for converting an analytical model and then convert it to a Volterra model obtainable only up to the second order.  相似文献   

5.
This paper proposes a new adaptive nonlinear model predictive control (NMPC) methodology for a class of hybrid systems with mixed inputs. For this purpose, an online fuzzy identification approach is presented to recursively estimate an evolving Takagi–Sugeno (eTS) model for the hybrid systems based on a potential clustering scheme. A receding horizon adaptive NMPC is then devised on the basis of the online identified eTS fuzzy model. The nonlinear MPC optimization problem is solved by a genetic algorithm (GA). Diverse sets of test scenarios have been conducted to comparatively demonstrate the robust performance of the proposed adaptive NMPC methodology on the challenging start-up operation of a hybrid continuous stirred tank reactor (CSTR) benchmark problem.  相似文献   

6.
In this work, synthesis of robust distributed model predictive control (MPC) is presented for a class of linear systems subject to structured time-varying uncertainties. By decomposing a global system into smaller dimensional subsystems, a set of distributed MPC controllers, instead of a centralised controller, are designed. To ensure the robust stability of the closed-loop system with respect to model uncertainties, distributed state feedback laws are obtained by solving a min–max optimisation problem. The design of robust distributed MPC is then transformed into solving a minimisation optimisation problem with linear matrix inequality constraints. An iterative online algorithm with adjustable maximum iteration is proposed to coordinate the distributed controllers to achieve a global performance. The simulation results show the effectiveness of the proposed robust distributed MPC algorithm.  相似文献   

7.
The implementation of model predictive control (MPC) requires to solve an optimization problem online. The computation time, often not negligible especially for nonlinear MPC (NMPC), introduces a delay in the feedback loop. Moreover, it impedes fast sampling rate setting for the controller to react to uncertainties quickly. In this paper, a dual time scale control scheme is proposed for linear/nonlinear systems with external disturbances. A pre-compensator works at fast sampling rate to suppress uncertainty, while the outer MPC controller updates the open loop input sequence at a slower rate. The computation delay is explicitly considered and compensated in the MPC design. Four robust MPC algorithms for linear/nonlinear systems in the literature are adopted and tailored for the proposed control scheme. The recursive feasibility and stability are rigorously analysed. Three simulation examples are provided to validate the proposed approaches.  相似文献   

8.
Composite predictive flight control for airbreathing hypersonic vehicles   总被引:1,自引:0,他引:1  
The robust optimised tracking control problem for a generic airbreathing hypersonic vehicle (AHV) subject to nonvanishing mismatched disturbances/uncertainties is investigated in this paper. A baseline nonlinear model predictive control (MPC) method is firstly introduced for optimised tracking control of the nominal dynamics. A nonlinear-disturbance-observer-based control law is then developed for robustness enhancement in the presence of both external disturbances and uncertainties. Compared with the existing robust tracking control methods for AHVs, the proposed composite nonlinear MPC method obtains not only promising robustness and disturbance rejection performance but also optimised nominal tracking control performance. The merits of the proposed method are validated by implementing simulation studies on the AHV system.  相似文献   

9.
In model predictive control (MPC), the input sequence is computed, minimizing a usually quadratic cost function based on the predicted evolution of the system output. In the case of nonlinear MPC (NMPC), the use of nonlinear prediction models frequently leads to non‐convex optimization problems with several minimums. This paper proposes a new NMPC strategy based on second order Volterra series models where the original performance index is approximated by quadratic functions, which represent a lower bound of the original performance index. Convexity of the approximating quadratic cost functions can be achieved easily by a suitable choice of the weighting of the control increments in the performance index. The approximating cost functions can be globally minimized by convex optimization techniques in order to compute the input sequence. The minimization of the performance index is carried out by an iterative optimization procedure, which guarantees convergence to the solution. Furthermore, for a nominal prediction model, asymptotic stability for the proposed NMPC strategy can be shown. In the case of considering an estimation error in the prediction model, input‐to‐state practical stability is assured. The control performance of the NMPC strategy is illustrated by experimental results. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
This work is concerned with the robust model predictive control (MPC) for a class of distributed networked control systems (NCSs), in which the input quantization and switching topology are both considered. By utilizing the sector bound approach, the NCSs with quantization are converted into the linear systems with sector bound uncertainties. The topology switching is governed by a switching signal and the dynamic behavior is modeled as a switched control system. A new robust MPC design technique is derived to minimize the upper bound of a weighted quadratic performance index. Moreover, the conditions of both the recursive feasibility of the MPC design and the stability of the resulting closed‐loop system are developed. Finally, simulation results are presented to verify the effectiveness of the proposed MPC design.  相似文献   

11.
Linear model predictive control (MPC) is a widely‐used control strategy in chemical processes. Its extension to nonlinear MPC (NMPC) has drawn increasing attention since many process systems are inherently nonlinear. When implementing the NMPC based on a nonlinear predictive model, a nonlinear dynamic optimization problem must be calculated. For the sake of solving this optimization problem efficiently, a latent‐variable dynamic optimization approach is proposed. Two kinds of constraint formulations, original variable constraint and Hotelling T2 statistic constraint, are also discussed. The proposed method is illustrated in a pH neutralization process. The results demonstrate that the latent‐variable dynamic optimization based the NMPC strategy is efficient and has good control performance.  相似文献   

12.
Min-max model predictive control (MPC) is one of the control techniques capable of robustly stabilize uncertain nonlinear systems subject to constraints. In this paper we extend existing results on robust stability of min-max MPC to the case of systems with uncertainties which depend on the state and the input and not necessarily decaying, i.e. state and input dependent bounded uncertainties. This allows us to consider both plant uncertainties and external disturbances in a less conservative way.It is shown that the input-to-state practical stability (ISpS) notion is suitable to analyze the stability of worst-case based controllers. Thus, we provide Lyapunov-like sufficient conditions for ISpS. Based on this, it is proved that if the terminal cost is an ISpS-Lyapunov function then the optimal cost is also an ISpS-Lyapunov function for the system controlled by the min-max MPC and hence, the controlled system is ISpS. Moreover, we show that if the system controlled by the terminal control law locally admits certain stability margin, then the system controlled by the min-max MPC retains the stability margin in the feasibility region.  相似文献   

13.
This paper proposes a quadratic programming (QP) approach to robust model predictive control (MPC) for constrained linear systems having both model uncertainties and bounded disturbances. To this end, we construct an additional comparison model for worst-case analysis based on a robust control Lyapunov function (RCLF) for the unconstrained system (not necessarily an RCLF in the presence of constraints). This comparison model enables us to transform the given robust MPC problem into a nominal one without uncertain terms. Based on a terminal constraint obtained from the comparison model, we derive a condition for initial states under which the ultimate boundedness of the closed loop is guaranteed without violating state and control constraints. Since this terminal condition is described by linear constraints, the control optimization can be reduced to a QP problem.  相似文献   

14.
In this paper, a synthesis of model predictive control (MPC) algorithm is presented for uncertain systems subject to structured time‐varying uncertainties and actuator saturation. The system matrices are not exactly known, but are affine functions of a time varying parameter vector. To deal with the nonlinear actuator saturation, a saturated linear feedback control law is expressed into a convex hull of a group of auxiliary linear feedback laws. At each time instant, a state feedback law is designed to ensure the robust stability of the closed‐loop system. The robust MPC controller design problem is formulated into solving a minimization problem of a worst‐case performance index with respect to model uncertainties. The design of controller is then cast into solving a feasibility of linear matrix inequality (LMI) optimization problem. Then, the result is further extended to saturation dependent robust MPC approach by introducing additional variables. A saturation dependent quadratic function is used to reduce the conservatism of controller design. To show the effectiveness, the proposed robust MPC algorithms are applied to a continuous‐time stirred tank reactor (CSTR) process.  相似文献   

15.
The problem of robust adaptive predictive control for a class of discrete-time nonlinear systems is considered. First, a parameter estimation technique, based on an uncertainty set estimation, is formulated. This technique is able to provide robust performance for nonlinear systems subject to exogenous variables. Second, an adaptive MPC is developed to use the uncertainty estimation in a framework of min–max robust control. A Lipschitz-based approach, which provides a conservative approximation for the min–max problem, is used to solve the control problem, retaining the computational complexity of nominal MPC formulations and the robustness of the min–max approach. Finally, the set-based estimation algorithm and the robust predictive controller are successfully applied in two case studies. The first one is the control of anonisothermal CSTR governed by the van de Vusse reaction. Concentration and temperature regulation is considered with the simultaneous estimation of the frequency (or pre-exponential) factors of the Arrhenius equation. In the second example, a biomedical model for chemotherapy control is simulated using control actions provided by the proposed algorithm. The methods for estimation and control were tested using different disturbances scenarios.  相似文献   

16.
A recurrent neural network-based nonlinear model predictive control (NMPC) scheme in parallel with PI control loops is developed for a simulation model of an industrial-scale five-stage evaporator. Input–output data from system identification experiments are used in training the network using the Levenberg–Marquardt algorithm with automatic differentiation. The same optimization algorithm is used in predictive control of the plant. The scheme is tested with set-point tracking and disturbance rejection problems on the plant while control performance is compared with that of PI controllers, a simplified mechanistic model-based NMPC developed in previous work and a linear model predictive controller (LMPC). Results show significant improvements in control performance by the new parallel NMPC–PI control scheme.  相似文献   

17.
In recent years, nonlinear model predictive control (NMPC) schemes have been derived that guarantee stability of the closed loop under the assumption of full state information. However, only limited advances have been made with respect to output feedback in the framework of nonlinear predictive control. This paper combines stabilizing instantaneous state feedback NMPC schemes with high-gain observers to achieve output feedback stabilization. For a uniformly observable MIMO system class it is shown that the resulting closed loop is asymptotically stable. Furthermore, the output feedback NMPC scheme recovers the performance of the state feedback in the sense that the region of attraction and the trajectories of the state feedback scheme can be recovered to any degree of accuracy for large enough observer gains, thus leading to semi-regional results. Additionally, it is shown that the output feedback controller is robust with respect to static sector bounded nonlinear input uncertainties.  相似文献   

18.
控制系统中存在的不确定性为其性能优化带来诸多问题.自适应控制和鲁棒控制是针对系统存在的不确定性而采取的不同设计策略;前者没有充分考虑系统的未建模动态,而后者往往是针对不确定的最大界而设计,具有较强的保守性.本文试图将自适应控制和鲁棒控制的策略相结合,提出了一种在模型预测控制中利用未来不确定信息的对偶自适应模型预测控制策略.该策略将系统中由未建模动态引起的不确定性参数化表达,并为其设定边界约束,作为优化问题中新的约束,在优化控制目标的同时减小系统不确定性对控制的影响.仿真结果表明,本文提出的算法较传统自适应模型预测控制算法,对于系统存在的不确定性由于在迭代过程中采用参数化描述,得到了更好的系统性能,且具有更好的收敛性.  相似文献   

19.
In this paper, a robust model predictive control approach is proposed for a class of uncertain systems with time-varying, linear fractional transformation perturbations. By adopting a sequence of feedback control laws instead of a single one, the control performance can be improved and the region of attraction can be enlarged compared with the existing model predictive control (MPC) approaches. Moreover, a synthesis approach of MPC is developed to achieve high performance with lower on-line computational burden. The effectiveness of the proposed approach is verified by simulation examples.  相似文献   

20.
Advanced control strategy is necessary to ensure high efficiency and high load-following capability in the operation of modern power plant. Model predictive control (MPC) has been widely used for controlling power plant. Nevertheless, MPC needs to further improve its learning ability especially as power plants are nonlinear under load-cycling operation. Iterative learning control (ILC) and MPC are both popular approaches in industrial process control and optimization. The integration of model-based ILC with a real-time feedback MPC constitutes the model predictive iterative learning control (MPILC). Considering power plant, this paper presents a nonlinear model predictive controller based on iterative learning control (NMPILC). The nonlinear power plant dynamic is described by a fuzzy model which contains local liner models. The resulting NMPILC is constituted based on this fuzzy model. Optimal performance is realized within both the time index and the iterative index. Convergence property has been proven under the fuzzy model. Deep analysis and simulations on a drum-type boiler–turbine system show the effectiveness of the fuzzy-model-based NMPILC  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号