首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
针对具有控制量约束和可视性约束的六自由度机器人的视觉伺服系统,研究了基于图像空间局部模型的预测控制器的设计问题.首先对特征点的投影图像的运动学方程进行离散化,得到系统的误差预测模型.然后通过选取合适的性能指标函数,将视觉伺服控制器设计问题转化为一个具有控制量约束和可视性约束的最优化问题.进一步,利用对数障碍函数处理约束,得到系统的牛顿方程,获得控制量的迭代求解公式.最后,利用数值仿真和实验验证了所提方法的有效性.  相似文献   

2.
Two advanced nonlinear model-based control design methods – nonlinear model predictive control (NMPC) and a two-degree-of-freedom control-scheme with flatness-based feedforward control design and decentralised PI-controllers (FB-2DOF) – are compared in view of industrial application. The comparative evaluation is carried out on a setpoint-transition of the Klatt–Engell reactor model. Based on an analysis of simulation scenarios, the controllers are compared with respect to controller performance, robustness criteria, and implementation issues. Thereby, the choice of the control task and the comparison methodology are oriented on industrial practice.In the considered comparative evaluation, NMPC exhibits performance advantages when it comes to time-efficient setpoint-transitions in the nominal case, in which FB-2DOF control design is restricted by the existing input constraints. In return, robustness of stability of the FB-2DOF controller is determined only by the feedback controll part; it is therefore independent from the setpoint-transition performance – determined by the feedforward controll part – whereas the NMPC suffers from degradation of robustness properties if it is tuned for time-efficiency only. NMPC allows direct incorporation of process models and constraints, but, as it employs computationally expensive online optimisation, has to be connected to the digital control system (DCS) via some standard interface. The FB-2DOF controller in contrast can be directly implemented in a DCS, whereby the feedforward-part can be realised as an extension of an already existing feedback-part.  相似文献   

3.
本文将调度预测控制的思想应用于离线鲁棒预测控制,设计了高超声速飞行器计算有效的调度离线预测控制器.首先在不同的平衡点离线设计一系列控制规则,实际实施时只需要在不同的控制器之间进行切换,避免进行在线优化,大幅度减少了在线计算时间.通过估计局部控制器的稳定域,保证了切换控制器的稳定性.另外在确保良好控制品质的同时,还能够保证所有输入和状态均在给定约束范围.仿真试验表明,提出的方法能实现速度和高度较大范围的指令跟踪,所有输入和状态均在给定约束范围内;相比于在线鲁棒预测控制方法,仿真运行时间减少,可以实现高超声速飞行器的实时控制.  相似文献   

4.
In many control system applications, tracking a periodic reference signal or rejecting a disturbance signal with a limited frequency band is a necessary task. Repetitive control systems are designed to perform such tasks. Because the repetitive control systems by nature have introduced unstable controller structures, control signal amplitude constraints commonly encountered in control system applications need to be considered with special care. Otherwise, the repetitive control system could become unstable when the control signals became saturated. Using the same framework of Model Predictive Control (MPC), but without the cost of online optimization that usually occurs in the MPC algorithms, this paper shows the design and implementation procedures of repetitive control of multi-input and multi-output systems with anti-windup mechanisms. Furthermore, by using Fourier analysis of a reference signal or a disturbance signal, the structure of a repetitive control system is determined. Simple and complex simulation examples are used to illustrate the procedures of design and implementation.  相似文献   

5.
This paper deals with the application of artificial neural network (ANN) based ANFIS approach to automatic generation control (AGC) of a three unequal area hydrothermal system. The proposed ANFIS controller combines the advantages of fuzzy controller as well as quick response and adaptability nature of ANN. Appropriate generation rate constraints (GRC) have been considered for the thermal and hydro plants. The hydro area is considered with an electric governor and thermal area is considered with reheat turbine. The design objective is to improve the frequency and tie-line power deviations of the interconnected system. 1% step load perturbation has been considered occurring either in any individual area or occurring simultaneously in all the areas. It is a maiden application of ANFIS approach to a three unequal area hydrothermal system with GRC considering perturbation in a single area as well as in all areas. The performance of the ANFIS controller is compared with the results of integral squared error (ISE) criterion based integral controller published previously. Simulation results are presented to show the improved performance of ANFIS controller in comparison with the conventional integral controller. The results indicate that the controllers exhibit better performance. In fact, ANFIS approach satisfies the load frequency control requirements with a reasonable dynamic response.  相似文献   

6.
Reliable load frequency control (LFC) is crucial to the operation and design of modern electric power systems. Considering the LFC problem of a four-area interconnected power system with wind turbines, this paper presents a distributed model predictive control (DMPC) based on coordination scheme. The proposed algorithm solves a series of local optimization problems to minimize a performance objective for each control area. The generation rate constraints (GRCs), load disturbance changes, and the wind speed constraints are considered. Furthermore, the DMPC algorithm may reduce the impact of the randomness and intermittence of wind turbine effectively. A performance comparison between the proposed controller with and without the participation of the wind turbines is carried out. Analysis and simulation results show possible improvements on closed-loop performance, and computational burden with the physical constraints.   相似文献   

7.
Economic model predictive control (EMPC) is a model-based control scheme that integrates process control and economic optimization, which can potentially allow for time-varying operating policies to maximize economic performance. The manner in which an EMPC operates a process to optimize economics depends on the process dynamics, which are fixed by the process design. This raises the question of how process and EMPC designs interact. Works which have addressed process and control design interactions for steady-state operation have sought to simultaneously develop process designs and control law parameters to find the most profitable way to operate a process that is able to prevent process constraints from being violated and to optimize capital costs in the presence of disturbances. Because EMPC has the potential to operate a process in a transient fashion, this work first focuses on how EMPC and process design interact in the absence of disturbances. Using small-scale process examples, we seek to understand the fundamental nature of the interactions between EMPC and process design, including how these interactions can impact computational complexity of the controller and the design procedure. We subsequently utilize the insights gained to suggest controller design variables which might be considered as decision variables for a simultaneous process and control design problem when disturbances are considered.  相似文献   

8.
This article develops switched linear controllers for periodic exogenous signals using the framework of a continuous-time model predictive control. In this framework, the control signal is generated by an algorithm that uses receding horizon control principle with an on-line optimisation scheme that permits inclusion of operational constraints. Unlike traditional repetitive controllers, applying this method in the form of switched linear controllers ensures bumpless transfer from one controller to another. Simulation studies are included to demonstrate the efficacy of the design with or without hard constraints.  相似文献   

9.
Robust model predictive control with guaranteed setpoint tracking   总被引:1,自引:0,他引:1  
In this paper a novel robust model predictive control (RMPC) algorithm is proposed, which is guaranteed to stabilize any linear time-varying system in a given convex uncertainty region while respecting state and input constraints. Moreover, unlike most existing RMPC algorithms, the proposed algorithm is guaranteed to remove steady-state offset in the controlled variables for setpoints (possibly) different from the origin when the system is unknown linear time-invariant. The controller uses a dual-mode paradigm (linear control law plus free control moves to reach an appropriate invariant region), and the key step is the design of a robust linear state feedback controller with integral action and the construction of an appropriate polyhedral invariant region in which this controller is guaranteed to satisfy the process constraints. The proposed algorithm is efficient since the on-line implementation only requires one to solve a convex quadratic program with a number of decision variables that scale linearly with the control horizon. The main features of the new control algorithm are illustrated through an example of the temperature control of an open-loop unstable continuous stirred tank reactor.  相似文献   

10.
1-D engine simulation models are widely used for the analysis and verification of air-path design concepts to assess performance and therefore determine suitable hardware. The transient response is a key driver in the selection process which in most cases requires closed loop control of the model to ensure operation within prescribed physical limits and tracking of reference signals. Since the controller effects the system performance a systematic procedure which achieves close-to-optimal performance is desired, if the full potential of a given hardware configuration is to be properly assessed. For this purpose a particular implementation of Model Predictive Control (MPC) based on a corresponding Mean Value Engine Model (MVEM) is reported here. The MVEM is linearised on-line at each operating point to allow for the formulation of quadratic programming (QP) problems, which are solved as the part of the proposed MPC algorithm. The MPC output is used to control a 1-D engine model. The closed loop performance of such a system is benchmarked against the solution of a related optimal control problem (OCP). The system is also tested for operation at high altitude conditions to demonstrate the ability of the controller to respect specified physical constraints. As an example this study is focused on the transient response of a light-duty automotive Diesel engine. For the cases examined the proposed controller design gives a more systematic procedure than other ad hoc approaches that require considerable tuning effort.  相似文献   

11.
A predictive control strategy for vehicle platoons is presented in this paper, accommodating both string stability and constraints (e.g., physical and safety) satisfaction. In the proposed design procedure, the two objectives are achieved by matching a model predictive controller (MPC), enforcing constraints satisfaction, with a linear controller designed to guarantee string stability. The proposed approach neatly combines the straightforward design of a string stable controller in the frequency domain, where a considerable number of approaches have been proposed in literature, with the capability of an MPC-based controller enforcing state and input constraints.A controller obtained with the proposed design procedure is validated both in simulations and in the field test, showing how string stability and constraints satisfaction can be simultaneously achieved with a single controller. The operating region that the MPC controller is string stable is characterized by the interior of feasible set of the MPC controller.  相似文献   

12.
In this paper, an adaptive optimal control strategy is proposed for a class of strict‐feedback nonlinear systems with output constraints by using dynamic surface control. The controller design procedure is divided into two parts. One is the design of feedforward controller and the other is the design of optimal controller. To guarantee the satisfaction of output constraints in feedforward controller, nonlinear mapping is utilized to transform the constrained system into an unconstrained system. Neural‐network based adaptive dynamic programming algorithm is employed to approximate the optimal cost function and the optimal control law. By theoretical analysis, all the signals in the closed‐loop system are proved to be semi‐globally uniformly ultimately bounded and the output constraints are not violated. A numerical example illustrates the effectiveness of the proposed scheme.  相似文献   

13.
In process control, a significant number of problems are encountered where there are hard and soft constraints on the measured process variables and/or on the value and rate of change of the manipulated variables. On-line implementation of traditional control strategies becomes unfeasible since they cannot explicitly deal with process constraints. Model predictive control offers a viable alternative; however, a prominent issue is the behaviour of these algorithms when the prediction model does not match the actual plant. A possible solution is to formulate the problem in a linear/non-linear programming framework, using the cutting plane technique to locate the ‘worst’ plant/model mismatch at every time interval. This results in a very practical cautious predictive controller that computes the next controller action based on expected model/plant mismatch. Control of a stirred tank reactor illustrates the method, using a one-step ahead predictive controller.  相似文献   

14.
The implementation of the fuzzy predictive functional control (FPFC) on the magnetic suspension system is presented in the paper. The magnetic suspension system was in our case the pilot plant for magnetic bearing and is an open-loop unstable process, therefore a lead compensator was used to stabilize it. The high quality control requirements were a-periodical step response and zero steady-state error. Adding the integrator to a feedback causes overshoot. The solution to the problem was cascade control with fuzzy predictive functional controller in the outer loop. To cope with the unknown model parameters and the nonlinear nature of the magnetic system, a fuzzy identification based on FNARX model was used. After successful validation the obtained fuzzy model was used for controller design. The FPFC is compared with a cascade linear predictive functional control (PFC) and PID control. The results we obtained with the FPFC are very promising and hardly comparable with conventional control techniques.  相似文献   

15.
本文提出了一种基于约束预测控制的机械臂实时运动控制方法.该控制方法分为两层,分别设计了约束预测控制器和跟踪控制器.其中,约束预测控制器在考虑系统物理约束的条件下,在线为跟踪控制器生成参考轨迹;跟踪控制器采用最优反馈控制律,使机械臂沿参考轨迹运动.为了简化控制器的设计和在线求解,本文采用输入输出线性化的方式简化机械臂动力学模型.同时,为了克服扰动,在约束预测控制器中引入前馈策略,提出了带前馈一反馈控制结构的预测控制设计.因此,本文设计的控制器可以使机械臂在满足物理约束的条件下快速稳定地跟踪到目标位置.通过在PUMA560机理模型上进行仿真实验,验证了预测控制算法的可行性和有效性.  相似文献   

16.
Conventional state-space model predictive control requires a state estimator/observer to access the state information for feedback controller design. Its drawbacks are the numerical convergence stability of the observer and closed-loop control performance deterioration with activated plant input/output constraints. The recent direct use of measured input and output variables to formulate a non-minimal state-space (NMSS) model overcomes these problems, but the subsequent controller is too sensitive to model mismatch. In this article, an improved structure of NMSS model that incorporates the output-tracking error is first formulated and then a subsequent predictive functional control design is proposed. The proposed controller is tested on both model match and model mismatch cases for comparison with previous controllers. Results show that control performance is improved. In addition, a linear programming method for constraints dealing and a closed form of transfer function representation of the control system are provided for further insight into the proposed method.  相似文献   

17.
Multi-variable generalized predictive control algorithm has obtained great success in process industries. However, it suffers from a high computational cost because the multi-stage optimization approach in the algorithm is time-consuming when constraints of the control system are considered. In this paper, a dual neural network is employed to deal with the multi-stage optimization problem, and bounded constraints on the input and output signals of the control system are taken into account. The dual neural network has many favorable features such as simple structure, rapid execution, and easy implementation. Therefore, the computation efficiency, in comparison with the consecutive executions of numerical algorithms on digital computers, is increased dramatically. In addition, the dual network model can yield the exact optimum values of future control signals while many other neural networks only obtain the approximate optimal solutions. Hence the multi-variable generalized predictive control algorithm based on the dual neural network is suitable for industrial applications with the real-time computation requirement. Simulation examples are given to demonstrate the efficiency of the proposed approach.  相似文献   

18.
In this paper, a new data‐driven model predictive control (MPC), based on bilinear subspace identification, is considered. The system's nonlinear behavior is described with a bilinear subspace predictor structure in an MPC framework. Thus, the MPC formulation results in a fixed structure objective function with constraints regardless of the underlying nonlinearity. For unconstrained systems, the identified subspace predictor matrices can be directly used as controller parameters. Therefore, we design optimization algorithms that exploit this feature. The open‐loop optimization problem of MPC that is nonlinear in nature is solved with series quadratic programming (SQP) without any approximations. The computational efficiency already demonstrated with the current formulation presents further opportunities to enable online control of nonlinear systems. These improvements and close integration of modeling and control also eliminate the intermediate design step, which provides a means for data‐driven controller design in generalized predictive controller (GPC) framework. Finally, the proposed control approach is illustrated with a verification study of a nonlinear continuously stirred tank reactor (CSTR) system. Copyright © 2011 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society  相似文献   

19.
A non-fragile robust model predictive control (RMPC) is designed in the uncertain systems under bounded control signals. To this aim, a class of the nonlinear systems with additive uncertainty is considered in its general form. The RMPC synthesis could lead to the proper selection of the controller’s gains. Thus, the non-fragile RMPC design is translated into a minimization problem subjected to some constraints in terms of linear matrix inequality (LMI). Hence, the controller’s gains are computed by solving such a minimization problem. In some numerical examples, the suggested non-fragile RMPC is compared with the other methods. The simulation results demonstrate the effectiveness of the proposed RMPC in comparison with similar techniques.  相似文献   

20.
To allow the implementation of model predictive control on the chip, we first propose a primal–dual interior point method with convergence depth control to solve the quadratic programming problem of model predictive control. Compared with algorithms based on traditional termination criterion, the proposed method can significantly reduce the computation cost while obtaining an approximate solution of the quadratic programming problem with acceptable optimality and precision. Thereafter, an embedded model predictive controller based on the quadratic programming solver is designed and implemented on a digital signal processor chip and a prototype system is built on a TMDSEVM6678LE digital signal processor chip. The controller is verified on two models by using the hardware in loop frame to mimic real applications. The comparison shows that the whole design is competitive in real‐time applications. The typical computation time for quadratic programming problems with 5 decision variables and 110 constraints can be reduced to less than 2 ms on an embedded platform.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号