首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Ceramics International》2017,43(4):3741-3747
Silicon carbide reticulated porous ceramics (SiC RPCs) with three-layered struts were fabricated by polymer replica method, followed by infiltrating alumina slurries containing silicon (slurry-Si) and andalusite (slurry-An), respectively. The effects of composition of infiltration slurries on the strut structure, mechanical properties and thermal shock resistance of SiC RPCs were investigated. The results showed that the SiC RPCs infiltrated with slurry-Si and slurry-An exhibited better mechanical properties and thermal shock resistance in comparison with those of alumina slurry infiltration, even obtained the considerable strength at 1300 °C. In slurry-Si, silicon was oxidized into SiO2 in the temperature range from 1300 °C to 1400 °C and it reacted with Al2O3 into mullite phase at 1450 °C. Meantime, the addition of silicon in slurry-Si could reduce SiC oxidation of SiC RPCs during firing process in contrast with alumina slurry. With regard to slurry-An, andalusite started to transform into mullite phase at 1300 °C and the secondary mullitization occurred at 1450 °C. The enhanced mechanical properties and thermal shock resistance of SiC RPCs infiltrated alumina slurries containing silicon and andalusite were attributed to the optimized microstructure and the triangular zone (inner layer of strut) with mullite bonded corundum via reaction sintering. In addition, the generation of residual compressive stress together with better interlocked needle-like mullite led to the crack-deflection in SiC skeleton, thus improving the thermal shock resistance of obtained SiC RPCs.  相似文献   

2.
《Ceramics International》2016,42(11):13091-13097
Silicon carbide reticulated porous ceramics (SiC RPCs) with multi-layered struts were fabricated at 1450 °C by polymer sponge replica technique, followed by vacuum infiltration. The effect of additives (polycarboxylate, ammonium lignosulfonate and sodium carboxymethyl-cellulose) on the rheological behavior of silicon carbide slurry was firstly investigated, and then the slurry was coated on polyurethane open-cell sponge template. Furthermore, alumina slurry was adopted to fill up the hollow struts in vacuum infiltration process after the coated sponge was pre-treated at 850 °C. The results showed that the coating thickness on the struts and the microstructure in SiC RPCs were closely associated with the solid content of alumina slurry during vacuum infiltration. The typical multi-layered strut of SiC RPCs could be achieved after the infiltration of an alumina slurry containing 77 wt% solid content. The compressive strength and thermal shock resistance of the infiltrated specimens were significantly improved in comparison with those of non-infiltrated ones. The improvement was attributed to the in-situ formation of reaction-bonded multilayer struts in SiC RPCs, which were characterized by the exterior coating of aluminosilicate-corundum, middle part of mullite bonded SiC and interior zone of corundum.  相似文献   

3.
《Ceramics International》2023,49(6):9097-9103
SiC reticulated porous ceramic (SRPC) as the key component determined the service life and combustion characteristics of porous burner. The novel multi-layer struts were constructed to synergistically improve the oxidation resistance and infrared radiation of SRPC, including microporous cordierite coating, dense mullite transition layer, SiC skeleton and filling layer. The continuous mullite transition layer significantly improved the resistance to water vapor oxidation of SRPC, also their strength and thermal shock resistance were enhanced because the elimination of strut defects in multi-layer struts. In addition, the microporous cordierite coating generated from the burnt out of pitch increased the burner surface temperature from 764.4 °C to 1061.7 °C, and obviously reduced the CO/NOx emission due to its improved infrared radiation property. Furthermore, the porous cordierite coating enhanced the heat radiation of SRPC, thus increasing the heating rate of the burner from 29.4 °C/min to 33.1 °C/min in the process of water heating.  相似文献   

4.
《Ceramics International》2020,46(3):2910-2914
Porous silicon-bonded silicon carbide (SBSC) ceramics were prepared under argon atmosphere, with silicon as pore former and bonding material, simultaneously, sodium dodecyl benzene sulfonate (SDBS) and ZrO2 as sintering additives, the effects of SDBS and ZrO2 on the porosity, pore size, mechanical, physical and thermal properties and microstructures were investigated. The results suggested that suitable content of SDBS and ZrO2 could not only effectively lower the sintering temperature to 1450 °C due to the sticky flow of molten silicon, but also increase the pore structure and improve the bending strength. The reason for this is that SDBS decomposed into Na2O which reacted with ZrO2 and impurity SiO2, which was the native oxide film on the surface of SiC particles, to form a bonding phase between SiC particles to improve the bending strength; meanwhile, the disappearances of impurity SiO2 would benefit the bond of molten silicon and silicon carbide particles, and silicon melt leaving pores in its original position to increase the pore structure. The optimal apparent porosity, bending strength, average pore size, gas permeance and residual bending strength after thermal shock cycles of SBSC porous ceramic sintered at 1450 °C with 5 wt% SDBS and 6 wt% ZrO2 were 38.33%, 55.4 MPa, 11.3 μm, 106.4 m3/m2·h·kPa and 28.2 MPa, respectively.  相似文献   

5.
Silicon carbide reticulated porous ceramics (SiC RPCs) with multi‐layered struts were fabricated by polymer replica technique with SiC slurry, followed by infiltrating alumina slurries containing andalusite under vacuum condition. The effects of andalusite addition on the microstructure and mechanical properties of SiC RPCs were investigated, also the residual stress within the multi‐layered strut was predicted. Theoretical calculations showed that the residual tensile stress generated in the outer layer of SiC RPCs because of its larger thermal expansion coefficient of infiltration slurry than that of SiC slurry at elevated temperature. Furthermore, the addition of andalusite reduced the thermal expansion coefficient and Young's modulus of infiltration slurries, thereby significantly reducing the residual stress of the outer layer in multi‐layered struts. The reduced residual tensile stress within the outer layer was beneficial to eliminate surface cracks on the struts, thus improving the mechanical properties and thermal shock resistance of SiC RPCs.  相似文献   

6.
《Ceramics International》2017,43(14):11197-11203
Silicon carbide reticulated porous ceramics (SiC RPCs) were fabricated by polymer replica technique. The effects of nitride whisker template on the growth of mullite, the strut structure and mechanical properties of SiC RPCs were investigated. Prepolyurethane (PU) open-cell sponge was first coated by SiC slurry consisting of SiC, reactive Al2O3, microsilica and Si powder, then it was nitridized at 1400 °C in a flowing N2 atmosphere to prepare SiC preforms. Subsequently, these preforms were treated by vacuum infiltration of alumina slurry and fired at 1450 °C in air. The results showed that Si2N2O whiskers grew on the surface and in the matrix of SiC preforms after nitridation. The diameter of struts in SiC RPCs increased after vacuum infiltration process because alumina slurry was easily adhered by the surface nitride whiskers. In addition, such whiskers inside the strut of SiC preforms acted as the template to promote the growth of column-liked mullite in SiC RPCs. The mechanical properties and thermal shock resistance of SiC RPCs were greatly improved due to the special interfacial characteristics of multi-layered struts as well as better interlocked column-liked mullite in SiC skeleton.  相似文献   

7.
The new route for recycling fly ash was proposed to prepare SiC reticulated porous ceramics (SRPCs) with high strength and increased efficient filtration for molten metal filtration. The effects of fly ash on the rheological characteristics, microstructure evaluation and wetting behavior between SRPCs and molten metal were investigated. It was found that the fly ash was beneficial to thixotropic property of SiC slurry when its content was less than 30 wt%. Furthermore, fly ash in SRPCs was completely transformed into mullite with needle-shape at 1300 °C, forming a porous structure containing micro pores and windows. SRPCs containing 20 wt% fly ash exhibited a higher strength because of the improved rheological properties of SiC slurry and the optimized microstructure in skeleton. In addition, the added fly ash in SRPCs could increase the contact angle between skeleton substrate and molten metal via microporosization of skeleton, thus exhibiting the potential ability to improve the filtration efficiency.  相似文献   

8.
Mesophase pitch (MP) was doped by nano-AlN to produce carbon foams followed by liquid silicon infiltration to prepare silicon carbide foams. Experiments have been carried out to investigate the effects of nano-AlN doping on bending strength and thermal shock resistance of the silicon carbide foams. Microstructure observation and phase identification indicate that AlN doping strengthens the silicon carbide foams by grain refining and solid-solution reaction. With 13 wt.% of nano-AlN, silicon carbide foams were obtained with the highest quality in bending strength of 14.1 MPa, thermal shock resistance, and bulk density of 0.73 g/cm3.  相似文献   

9.
Silica-bonded porous nano-SiC ceramics with extremely low thermal conductivity were prepared by sintering nano-SiC powder-carbon black template compacts at 600–1200 °C for 2 h in air. The microstructure of the silica-bonded porous nano-SiC ceramics consisted of SiC core/silica shell particles, a silica bonding phase, and hierarchical (meso/macro) pores. The porosity and thermal conductivity of the silica-bonded porous nano-SiC ceramics can be controlled in the ranges of 8.5–70.2 % and 0.057–2.575 Wm−1 K−1, respectively, by adjusting both, the sintering temperature and template content. Silica-bonded porous nano-SiC ceramics with extremely low thermal conductivity (0.057 Wm−1 K−1) were developed at a very low processing temperature (600 °C). The typical porosity, average pore size, compressive strength, and specific compressive strength of the porous nano-SiC ceramics were ∼70 %, 50 nm, 2.5 MPa, and 2.7 MPa·cm3/g, respectively. The silica-bonded porous nano-SiC ceramics were thermally stable up to 1000 °C in both air and argon atmospheres.  相似文献   

10.
Silicon carbide (SiC) is a kind of structural ceramics with excellent properties and it is widely used in industrial fields. Stereolithography (SL) is a potential additive manufacturing technique to fabricate fine complex SiC components, the resin-based SiC slurry with superior rheological and photo-polymerization properties is important for SL. In this paper, we investigated the influence of SiC powder on the properties of the SiC slurries for SL. The physical characteristics of SiC powder such as particle size, size distribution and appearance were tested and observed, and their influence on the dispersion, sedimentation and photo-polymerization property of the SiC slurry were investigated and discussed in detail based on their correlative theory, we finally prepared SiC slurry with superior rheological and photo-polymerization properties, and fabricated the fine complex SiC green body with low defects, high accuracy and high bending strength successfully. The SiC slurry with the solid content of 40 vol% was fabricated by the SiC powder with the median diameter D50 ≈ 10.0 μm and a narrow particle size distribution, it is Bingham fluid with good fluidity and the viscosity of it is 464.40 mPa s under the shear rate of 51.08 s?1, the cured SiC parts with Z – axis dimension change of 0.75% was finally fabricated, the three points bending strength of it is 50.18 MPa. Our research work provides some fundamental understanding of the SL technique for fabricating fine complex SiC components, explored a suitable way to fabricate high quality SiC green parts through SL, and offers some valuable references for preparing SiC slurry with superior rheological and photo-polymerization properties.  相似文献   

11.
Herein, the influence of oxidation temperature on the oxidation behavior, microstructure and electromagnetic shielding performance of layered porous ceramics has been systematically investigated. Layered SiC/PyC porous ceramics were prepared by using low-pressure chemical vapor infiltration (LPCVI) method. The oxidized SiC/PyC layered porous ceramics exhibited a negligible mass reduction of 11.94 mg·cm?3, which indicates the excellent high-temperature oxidation resistance of porous ceramics. The electromagnetic shielding performance of SiC/PyC porous ceramics did not exhibit any obvious change even after oxidation at high temperature from 900 to 1300 °C for 10 h. The SET of the layered SiC/PyC porous ceramics was 24.1, 20.0, 19.5, 19.0, 19.8 dB after oxidation at 25 °C, 900 °C, 1000 °C, 1100 °C and 1300 °C, which corresponds to a decrease of 17.01%, 19.09%, 21.16% and 17.84%, respectively. The high-temperature oxidation has rendered a more significant influence on the reflection efficiency of the layered SiC/PyC porous ceramics.  相似文献   

12.
《Ceramics International》2017,43(15):11855-11863
A new gradient pore structure in porous SiC ceramics was fabricated by low pressure chemical vapor infiltration (LPCVI). Effects of deposition duration on the mechanical properties and permeability of porous SiC ceramics were investigated. Results demonstrated that pore diameter and shapes decreased from the surface to the interior along with LPCVI duration. Porous SiC ceramics with deposition duration of 160 h exhibited flexural strength of 48.05 MPa and fracture toughness of 1.30 MPa m1/2, where 221% and 189% improvements were obtained compared to porous SiC ceramics without LPCVI, due to CVI-SiC layer strengthening effect. Additionally, at the same gas velocity, pressure drop increase rate was faster due to apparent porosity and pore size change.  相似文献   

13.
《Ceramics International》2020,46(7):8536-8542
Porous SiC ceramic membrane supports are widely employed in a wide variety of high-temperature applications, such as hot flue gas filtration, porous burners and molten metal filters. Herein, SiC supports, with a porosity of ~37%, were prepared by using low-temperature bonding techniques and the influence of different bonding phases, such as mullite, cordierite and glass, on ambient-temperature flexural strength, hot modulus of rupture (HMOR), thermal shock resistance and oxidation resistance were systematically investigated. The results reveal that the glass-bonded SiC (GBSC) support exhibited the highest ambient-temperature flexural strength of 33.6 MPa, whereas the flexural strength of mullite-bonded SiC (MBSC) and cordierite-bonded SiC (CBSC) supports ranged from 22 to 25 MPa. However, the presence of glass phase deteriorated the high-temperature properties of the support. MBSC support rendered superior mechanical strength at high temperature and self-strengthening in a certain temperature range, such as HMOR improved 47.5% at 900 °C, but HMOR of glass-bonded support was only 57.4% of the ambient-temperature strength. Moreover, MBSC and CBSC supports exhibited better thermal shock resistance than GBSC supports and the critical temperature difference of water quenching for MBSC supports was ~200 °C higher than GBSC supports. In addition, MBSC support rendered superior oxidation resistance and exhibited a weight gain rate of ~0.1% at 1150 °C for 24 h, which is 54.4% and 42.2% lower than CBSC and GBSC supports, respectively.  相似文献   

14.
Excellent microwave absorption properties of porous SiC ceramics were successfully synthesized using SiC/camphene slurries with various polycarbosilane (PCS) contents related to the SiC powder. The compositions of the nanowires (NWs) growth in the pore channels of porous SiC ceramics strongly depended on the pyrolysis atmosphere, with N2-generating Si3N4 NWs and Ar SiC NWs. With the increase of PCS content, the minimum reflection coefficient (RC) of porous SiC ceramics decreased from ?7.6 dB to ?67.4 dB in Ar and from ?10.9 dB to ?24.7 dB in N2, respectively. The effective absorption bandwidth (EAB) of porous SiC ceramics could be up to 8.1 GHz in Ar and 4.5 GHz in N2. The enhanced microwave absorption properties of porous SiC ceramics could be attributed to the formation of SiC nano-crystalline, nanosized carbon and the NWs, which would increase the amount of boundaries and defects, leading to the electronic dipole polarization and interfacial scattering.  相似文献   

15.
Porous SiC ceramics have been used in high temperature flue gas filtration fields because of their excellent properties such as high strength, high temperature resistance, corrosion resistance, and long service time. This work reports the porous SiOC-bonded SiC ceramics prepared at low temperature. The properties of porous SiC ceramics were first investigated with silicone resin content from 10 to 25 wt%, and then the effects of different pore-forming agent contents on the behaviors of porous SiC ceramics were discussed by adjusting poly (methyl methacrylate) PMMA microbeads from 5 to 20 wt%. The prepared porous SiC ceramics showed apparent porosity from 17.3% to 57.7%, compressive strength from 6 to 216 MPa, and Darcy permeability k1 ranging from 7.02 × 10−14 to 1.45 × 10−12 m2. The corrosion behavior of porous SiC ceramics was investigated in acidic and alkaline media. The porous SiC ceramics showed better corrosion resistance in acidic solutions.  相似文献   

16.
SiC with different particles and a clay mineral bentonite (montmorillonite) were mixed in water to prepare ceramic slurry. The slurry was then infiltrated high porous polyurethane sponge. Excess slurry was squeezed out to adjust ceramic rate in the infiltrated body. The pore walls were coated with ceramic mix after the infiltrated body was dried. The polyurethane containing SiC particles and bentonite was fired in a box furnace to burn out the polyurethane from the body at 500 °C for 30 min. The remaining porous ceramic bodies were sintered at elevated temperatures to give strength. SiC particles with bentonite surface coating took polyurethane pore forms after firing the sponge. Bentonite was both used as binder for ceramic slurry at room temperatures and the sintering additives at elevated temperatures. Therefore, increasing bentonite addition gives higher strength to the resulting ceramic performs.  相似文献   

17.
Titanium nitride (TiN) with high porosity (90%) was successfully in-situ prepared by a novel approach with the combination of carbothermic reduction nitriding method and replication template method. The microstructure of porous TiN prepared with different temperature and phenolic resin (PF) content were revealed by XRD, Raman spectrum, SEM, TEM, respectively. The results show that when the mass ratio of PF and TiO2 is 1:2 and the sintering temperature is 1850 ℃, porous TiN with high purity and ideal strength could be synthesized. In addition, the synthesis path and thermodynamic mechanism of porous TiN were analyzed by TG-DSC and Gibbs free energy calculation. The mechanical properties and corrosion resistance were preliminarily explored.  相似文献   

18.
To expand the application of SiC/SiC joints under extreme conditions, Nano-Infiltration and Transient Eutectic (NITE) joining technology with AlN-Y2O3 as a sintering additive was successfully developed. The rheological properties of the slurry and the microstructure evolution of the joints were systematically characterized by rheometer, SEM, EDS, EBSD, and TEM, respectively. Both room-temperature and high-temperature flexural strength was measured to evaluate the mechanical properties of the joints. An immersion test with concentrated nitric acids was performed to evaluate the corrosion resistance of the joints. The defect-free joining layer was composed of a dense α-SiC phase, a small amount of YAG(Y3Al5O12) distributed in the triangular grain boundary, and a Y-Al-O glass phase from AlN-Y2O3. The mechanism of NITE joining could be attributed to the incoherent growth of the newly generated α-SiC in the joining layer along the α-SiC substrate. The maximum room-temperature strength of the joints was 320.5 ± 37.6 MPa. When the test temperatures were 1000 °C, 1200 °C, and 1400 °C, the flexural strength reached 238.7 ± 33.1 MPa, 215.5 ± 52.5 MPa, and 166.9 ± 52.0 MPa, respectively. After immersing the joints in a concentrated HNO3 for 168 h, the flexural strength was 173.3 ± 12.6 MPa. The joints' excellent mechanical properties and corrosion resistance reveal great application potential under extreme conditions.  相似文献   

19.
A novel layered SiC/pyrolytic carbon (PyC) porous ceramic was synthesized from a nickel foam substrate via low-pressure chemical vapor infiltration (LPCVI) with SiCl3CH3-NH3-BCl3-H2-Ar. The microstructure and phase composition of the PyC deposited via Ni catalysis were investigated. In addition, the effect of the PyC content on the microstructure, conductivity, and electromagnetic shielding effectiveness of a two-layered SiC/PyC porous ceramic were discussed. Both the electrical conductivity (from 0.090 to 0.319?S/cm) and the total shielding effectiveness (from 19.2 to 29.0?dB) of the two-layer SiC/PyC porous ceramic (pore size: 200–400?µm) increased with the PyC content. The high-temperature shielding effectiveness of the sample showed an outstanding stability with temperature and remained nearly unchanged (only 2?dB variation) over the 25–600?°C temperature range.  相似文献   

20.
《Ceramics International》2021,47(22):31536-31547
A low-temperature sintered porous SiC-based clay-Ni system with controlled electrical resistivity (2.54 × 1010 Ω cm to 2 Ω cm), and thermal conductivity (3.5 W/m. K to 12.6 W/m. K) was successfully designed. Clay (20 wt% kaolin) was used as a sintering additive in all the compositions. The electrical resistivity, and thermal conductivity was controlled by varying the Ni content (0–25 wt%) in the samples. The electrical resistivity was recorded as low as 2 Ω cm with 25 wt% Ni that was sintered at 1400 °C in argon. The interface reaction between Ni and SiC formed conductive nickel silicide (Ni2Si), while the transformation of kaolin to mullite strengthened the mechanical properties. Submicron-sized Ni (0.3 μm) was more effective than micron-sized Ni (3.5 μm) in reducing the electrical resistivity, and increasing the thermal conductivity along with flexural strength. A comparative study of sintering temperatures showed that 1400 °C resulted in the lowest electrical resistivity (2 Ω cm) and the highest thermal conductivity of 12.6 W/m. K with flexural strength of 54 MPa at 32% porosity in the SiC-kaolin-Ni system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号