首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
一种改进的区间二型模糊控制器设计   总被引:1,自引:0,他引:1  
针对二型模糊控制器设计中出现的降型计算方法损失不确定性信息的问题,提出一种改进的区间二型模糊控制器.该控制器在充分利用二型模糊推理结果的前提下,对区间模糊输出进行再次优化,其优化指标可直接与被控系统性能相关,由此可得到更有利于提高系统整体性能的准确输出量.最后,将改进的控制器用于汽车非线性悬架系统的控制,仿真结果验证了所提出方法的有效性.  相似文献   

2.
Systematic design of a stable type-2 fuzzy logic controller   总被引:1,自引:0,他引:1  
Stability is one of the more important aspects in the traditional knowledge of automatic control. Type-2 fuzzy logic is an emerging and promising area for achieving intelligent control (in this case, fuzzy control). In this work we use the fuzzy Lyapunov synthesis as proposed by Margaliot and Langholz [M. Margaliot, G. Langholz, New Approaches to Fuzzy Modeling and Control: Design and Analysis, World Scientific, Singapore, 2000] to build a Lyapunov stable type-1 fuzzy logic control system, and then we make an extension from a type-1 to a type-2 fuzzy logic control system, ensuring the stability on the control system and proving the robustness of the corresponding fuzzy controller.  相似文献   

3.
Uncertainty is an inherent part in control systems used in real world applications. The use of new methods for handling incomplete information is of fundamental importance. Type-1 fuzzy sets used in conventional fuzzy systems cannot fully handle the uncertainties present in control systems. Type-2 fuzzy sets that are used in type-2 fuzzy systems can handle such uncertainties in a better way because they provide us with more parameters and more design degrees of freedom. This paper deals with the design of control systems using type-2 fuzzy logic for minimizing the effects of uncertainty produced by the instrumentation elements, environmental noise, etc. The experimental results are divided in two classes, in the first class, simulations of a feedback control system for a non-linear plant using type-1 and type-2 fuzzy logic controllers are presented; a comparative analysis of the systems’ response in both cases was performed, with and without the presence of uncertainty. For the second class, a non-linear identification problem for time-series prediction is presented. Based on the experimental results the conclusion is that the best results are obtained using type-2 fuzzy systems.  相似文献   

4.
In this paper we present a method for response integration in multi-net neural systems using interval type-2 fuzzy logic and fuzzy integrals, with the purpose of improving the performance in the solution of problems with a great volume of information. The method can be generalized for pattern recognition and prediction problems, but in this work we show the implementation and tests of the method applied to the face recognition problem using modular neural networks. In the application we use two interval type-2 fuzzy inference systems (IT2-FIS); the first IT2-FIS was used for feature extraction in the training data, and the second one to estimate the relevance of the modules in the multi-net system. Fuzzy logic is shown to be a tool that can help improve the results of a neural system by facilitating the representation of human perceptions.  相似文献   

5.
Applications of type-2 fuzzy logic systems to forecasting of time-series   总被引:1,自引:0,他引:1  
In this paper, we begin with a type-1 fuzzy logic system (FLS), trained with noisy data. We then demonstrate how information about the noise in the training data can be incorporated into a type-2 FLS, which can be used to obtain bounds within which the true (noisefree) output is likely to lie. We do this with the example of a one-step predictor for the Mackey–Glass chaotic time-series [M.C. Mackey, L. Glass, Oscillation and chaos in physiological control systems, Science 197 (1977) 287–280]. We also demonstrate how a type-2 FLS can be used to obtain better predictions than those obtained with a type-1 FLS.  相似文献   

6.
In this paper, a new selective feedback fuzzy neural network (SFNN) based on interval type-2 fuzzy logic systems is introduced by partitioning input and output spaces and based upon which a new FLS filter is further studied. The experimental results demonstrate that this new FLS filter outperforms other filters (e.g. the mean filter and the Wiener filter) in suppressing Gaussian noise and maintaining the original structure of an image.  相似文献   

7.
Industrial applications of type-2 fuzzy sets and systems: A concise review   总被引:2,自引:0,他引:2  
Data, as being the vital input of system modelling, contain dissimilar level of imprecision that necessitates different modelling approaches for proper analysis of the systems. Numbers, words and perceptions are the forms of data that has varying levels of imprecision. Existing approaches in the literature indicate that, computation of different data forms are closely linked with the level of imprecision, which the data already have. Traditional mathematical modelling techniques have been used to compute the numbers that have the least imprecision. Type-1 fuzzy sets have been used for words and type-2 fuzzy sets have been employed for perceptions where the level of imprecision is relatively high. However, in many cases it has not been easy to decide whether a solution requires a traditional approach, i.e., type-1 fuzzy approach or type-2 fuzzy approach. It has been a difficult matter to decide what types of problems really require modelling and solution either with type-1 or type-2 fuzzy approach. It is certain that, without properly distinguishing differences between the two approaches, application of type-1 and type-2 fuzzy sets and systems would probably fail to develop robust and reliable solutions for the problems of industry. In this respect, a review of the industrial applications of type-2 fuzzy sets, which are relatively novel to model imprecision has been considered in this work. The fundamental focus of the work has been based on the basic reasons of the need for type-2 fuzzy sets for the existing studies. With this purpose in mind, type-2 fuzzy sets articles have been selected from the literature using the online databases of ISI-Web of Science, ScienceDirect, SpringerLink, Informaworld, Engineering Village, Emerald and IEEE Xplore. Both the terms “type-2 fuzzy” and “application” have been searched as the main keywords in the topics of the studies to retrieve the relevant works. The analysis on the industrial applications of type-2 fuzzy sets/systems (FSs) in different topics allowed us to summarize the existing research areas and therefore it is expected be useful to prioritize future research topics. This review shows that there are still many opportunities for application of type-2 FSs for several different problem domains. Shortcomings of type-1 FSs can also be considered as an opportunity for the application of type-2 FSs in order to provide a better solution approach for industrial problems.  相似文献   

8.
    
In this paper a review of type-2 fuzzy logic applications in pattern recognition, classification and clustering problems is presented. Recently, type-2 fuzzy logic has gained popularity in a wide range of applications due to its ability to handle higher degrees of uncertainty. In particular, there have been recent applications of type-2 fuzzy logic in the fields of pattern recognition, classification and clustering, where it has helped improving results over type-1 fuzzy logic. In this paper a concise and representative review of the most successful applications of type-2 fuzzy logic in these fields is presented. At the moment, most of the applications in this review use interval type-2 fuzzy logic, which is easier to handle and less computational expensive than generalized type-2 fuzzy logic.  相似文献   

9.
In this work, the use of type-2 fuzzy logic systems as a novel approach for predicting permeability from well logs has been investigated and implemented. Type-2 fuzzy logic system is good in handling uncertainties, including uncertainties in measurements and data used to calibrate the parameters. In the formulation used, the value of a membership function corresponding to a particular permeability value is no longer a crisp value; rather, it is associated with a range of values that can be characterized by a function that reflects the level of uncertainty. In this way, the model will be able to adequately account for all forms of uncertainties associated with predicting permeability from well log data, where uncertainties are very high and the need for stable results are highly desirable. Comparative studies have been carried out to compare the performance of the proposed type-2 fuzzy logic system framework with those earlier used methods, using five different industrial reservoir data. Empirical results from simulation show that type-2 fuzzy logic approach outperformed others in general and particularly in the area of stability and ability to handle data in uncertain situations, which are common characteristics of well logs data. Another unique advantage of the newly proposed model is its ability to generate, in addition to the normal target forecast, prediction intervals as its by-products without extra computational cost.  相似文献   

10.
In this paper, we present a novel approach for realising the vision of ambient intelligence in ubiquitous computing environments (UCEs). This approach is based on embedding intelligent agents in UCEs. These agents use type-2 fuzzy systems which are able to handle the different sources of uncertainty and imprecision in UCEs to give a good response. We have developed a novel system for learning and adapting the type-2 fuzzy agents so that they can realise the vision of ambient intelligence by providing a seamless, unobtrusive, adaptive and responsive intelligence in the environment that supports the activities of the user. The user’s behaviours and preferences for controlling the UCE are learnt online in a non-intrusive and life long learning mode so as to control the UCE on the user’s behalf. We have performed unique experiments in which the type-2 intelligent agent has learnt and adapted online to the user’s behaviour during a stay of five days in the intelligent Dormitory (iDorm) which is a real UCE test bed. We will show how our type-2 agents can deal with the uncertainty and imprecision present in UCEs to give a very good response that outperforms the type-1 fuzzy agents while using smaller rule bases.  相似文献   

11.
A review of the methods used in the design of interval type-2 fuzzy controllers has been considered in this work. The fundamental focus of the work is based on the basic reasons for optimizing type-2 fuzzy controllers for different areas of application. Recently, bio-inspired methods have emerged as powerful optimization algorithms for solving complex problems. In the case of designing type-2 fuzzy controllers for particular applications, the use of bio-inspired optimization methods have helped in the complex task of finding the appropriate parameter values and structure of the fuzzy systems. In this review, we consider the application of genetic algorithms, particle swarm optimization and ant colony optimization as three different paradigms that help in the design of optimal type-2 fuzzy controllers. We also mention alternative approaches to designing type-2 fuzzy controllers without optimization techniques. We also provide a comparison of the different optimization methods for the case of designing type-2 fuzzy controllers.  相似文献   

12.
Advances in type-2 fuzzy sets and systems   总被引:3,自引:0,他引:3  
  相似文献   

13.
Even though fuzzy logic is one of the most common methodologies for matching different kind of data sources, there is no study which uses this methodology for matching publication and patent data within a technology evaluation framework according to the authors’ best knowledge. In order to fill this gap and to demonstrate the usefulness of fuzzy logic in technology evaluation, this study proposes a novel technology evaluation framework based on an advanced/improved version of fuzzy logic, namely; interval type-2 fuzzy sets and systems (IT2FSSs). This framework uses patent data obtained from the European Patent Office (EPO) and publication data obtained from Web of Science/Knowledge (WoS/K) to evaluate technology groups with respect to their trendiness. Since it has been decided to target technology groups, patent and publication data sources are matched through the use IT2FSSs. The proposed framework enables us to make a strategic evaluation which directs considerations to use-inspired basic researches, hence achieving science-based technological improvements which are more beneficial for society. A European Classification System (ECLA) class – H01-Basic Electric Elements – is evaluated by means of the proposed framework in order to demonstrate how it works. The influence of the use of IT2FSSs is investigated by comparison with the results of its type-1 counterpart. This method shows that the use of type-2 fuzzy sets, i.e. handling more uncertainty, improves technology evaluation outcomes.  相似文献   

14.
A control system that uses type-2 fuzzy logic controllers (FLC) is proposed for the control of a non-isothermal continuous stirred tank reactor (CSTR), where a first order irreversible reaction occurs and that is characterized by the presence of bifurcations. Bifurcations due to parameter variations can bring the reactor to instability or create new working conditions which although stable are unacceptable. An extensive analysis of the uncontrolled CSTR dynamics was carried out and used for the choice of the control configuration and the development of controllers. In addition to a feedback controller, the introduction of a feedforward control loop was required to maintain effective control in the presence of disturbances. Simulation results confirmed the effectiveness and the robustness of the type-2 FLC which outperforms its type-1 counterpart particularly when system uncertainties are present.  相似文献   

15.
In this study, a new approach for the formation of type-2 membership functions is introduced. The footprint of uncertainty is formed by using rectangular type-2 fuzzy granules and the resulting membership function is named as granular type-2 membership function. This new approach provides more degrees of freedom and design flexibility in type-2 fuzzy logic systems. Uncertainties on the grades of membership functions can be represented independently for any region in the universe of discourse and free of any functional form. So, the designer could produce nonlinear, discontinuous or hybrid membership functions in granular formation and therefore could model any desired discontinuity and nonlinearity. The effectiveness of the proposed granular type-2 membership functions is firstly demonstrated by simulations done on noise corrupted Mackey–Glass time series prediction. Secondly, flexible design feature of granular type-2 membership functions is illustrated by modeling a nonlinear system having dead zone with uncertain system parameters. The simulation results show that type-2 fuzzy logic systems formed by granular type-2 membership functions have more modeling capabilities than the systems using conventional type-2 membership functions and they are more robust to system parameter changes and noisy inputs.  相似文献   

16.
We describe in this paper a comparative study between fuzzy inference systems as methods of integration in modular neural networks for multimodal biometry. These methods of integration are based on techniques of type-1 fuzzy logic and type-2 fuzzy logic. Also, the fuzzy systems are optimized with simple genetic algorithms with the goal of having optimized versions of both types of fuzzy systems. First, we considered the use of type-1 fuzzy logic and later the approach with type-2 fuzzy logic. The fuzzy systems were developed using genetic algorithms to handle fuzzy inference systems with different membership functions, like the triangular, trapezoidal and Gaussian; since these algorithms can generate fuzzy systems automatically. Then the response integration of the modular neural network was tested with the optimized fuzzy systems of integration. The comparative study of the type-1 and type-2 fuzzy inference systems was made to observe the behavior of the two different integration methods for modular neural networks for multimodal biometry.  相似文献   

17.
In this paper, the type-2 fuzzy logic system (T2FLS) controller using the feedback error learning (FEL) strategy has been proposed for load frequency control (LFC) in the restructure power system. The original FEL strategy consists of an intelligent feedforward controller (INFC) (i.e. artificial neural network (ANN)) and the conventional feedback controller (CFC). The CFC acting as a general feedback controller to guarantee the stability of the system plays a crucial role in the transient state. The INFC is adopted in forward path to take over the control problem in the steady state. In this work, to improve the performance of the FEL strategy, the T2FLS is adopted instead of ANN in the INFC part due to its ability to model uncertainties, which may exist in the rules and measured data of sensors more effectively. The proposed FEL controller has been compared with a type-1 fuzzy logic system (T1FLS) – based FEL controller and the proportional, integral and derivative (PID) controller to highlight the effectiveness of the proposed method.  相似文献   

18.
In this paper, an interval type-2 fuzzy sliding-mode controller (IT2FSMC) is proposed for linear and nonlinear systems. The proposed IT2FSMC is a combination of the interval type-2 fuzzy logic control (IT2FLC) and the sliding-mode control (SMC) which inherits the benefits of these two methods. The objective of the controller is to allow the system to move to the sliding surface and remain in on it so as to ensure the asymptotic stability of the closed-loop system. The Lyapunov stability method is adopted to verify the stability of the interval type-2 fuzzy sliding-mode controller system. The design procedure of the IT2FSMC is explored in detail. A typical second order linear interval system with 50% parameter variations, an inverted pendulum with variation of pole characteristics, and a Duffing forced oscillation with uncertainty and disturbance are adopted to illustrate the validity of the proposed method. The simulation results show that the IT2FSMC achieves the best tracking performance in comparison with the type-1 Fuzzy logic controller (T1FLC), the IT2FLC, and the type-1 fuzzy sliding-mode controller (T1FSMC).  相似文献   

19.
Type-2模糊系统的理论有着广泛的应用,但是Type-2模糊系统结构较Type-1模糊系统复杂,且编程实现难度和计算强度都较大.Matlab平台下,运用M语言调试算法,在实现Type-2模糊系统的基础上,利用C语言的高效性优化算法,改进程序,克服了Matlab计算瓶颈的问题.给出的Matlab C混合编程实现Type-2模糊系统的程序,编译后可以函数的形式调用,既保留了Matlab平台处理数据的便捷性,又具有很高的执行效率.仿真结果表明该方法的有效性.  相似文献   

20.
This paper presents a multi-agent system based on type-2 fuzzy decision module for traffic signal control in a complex urban road network. The distributed agent architecture using type-2 fuzzy set based controller was designed for optimizing green time in a traffic signal to reduce the total delay experienced by vehicles. A section of the Central Business District of Singapore simulated using PARAMICS software was used as a test bed for validating the proposed agent architecture for the signal control. The performance of the proposed multi-agent controller was compared with a hybrid neural network based hierarchical multi-agent system (HMS) controller and real-time adaptive traffic controller (GLIDE) currently used in Singapore. The performance metrics used for evaluation were total mean delay experienced by the vehicles to travel from source to destination and the current mean speed of vehicles inside the road network. The proposed multi-agent signal control was found to produce a significant improvement in the traffic conditions of the road network reducing the total travel time experienced by vehicles simulated under dual and multiple peak traffic scenarios.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号