首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
During recent years, numerous publications have dealt with composites of various hard materials. The present work examines the production of a multilayer coating consisting of diamond as the basic layer with protective chemical vapor deposition (CVD) layers of titanium carbide (TiC), titanium nitride (TiN) and titanium carbonitride [Ti(C,N)]. All these combinations could be realized and showed quite good adherence both between each other and with the substrate. Detailed investigations with scanning electron microscopy (SEM), Raman spectroscopy and X-ray diffraction (XRD) were conducted to characterize the deposited multilayers.  相似文献   

2.
Indentation fatigue of WC grains on basal and prismatic planes in WC–Co cemented carbide has been investigated using instrumented indentation at nano level and applied loads from 5 mN to 50 mN. The influence of indentation load and crystallographic orientation of WC grains has been studied. Scanning electron microscopy (SEM), electron backscattered diffraction (EBSD) and atomic force microscopy (AFM) have been used for the characterization of microstructure, orientation of WC grains, topography of indents and slip lines in WC grains. Significant influence of the crystallographic orientation of WC grains on the indentation fatigue has been found. The indentation depth increased with the increasing load more intensively during the fatigue test of the prismatic planes than the basal planes. This behavior is probably connected with the different slip and dislocation mechanisms during the indentation of basal and prismatic planes.  相似文献   

3.
The unique combination of high hardness, high thermal conductivity, and low friction coefficient makes diamond an excellent cutting tool material for the machining of abrasive, non-ferrous workpieces. This paper reviews basic and applied aspects of the technology as applied to the preparation of diamond coated cutting tools.  相似文献   

4.
Cermet cutting tools are widely used for semi-finishing and finishing work on steel and cast iron. However, their brittleness is still an unavoidable limitation for their utilizations. Zirconium was added to improve the fracture toughness of Ti(C, N) based cermets. The microstructure and the fracture surfaces of cermets were studied by using scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). The experimental results reveal that Zr dissolved and formed solid solutions during the sintering process. The amount of grains with typical core/rim structure decreases and that of coreless grains increases with increasing Zr addition. Moreover, the fracture toughness is improved clearly due to the increased amount of the coreless grains, the spinodal decomposition in cermets, as well as the crack deflection and crack branching mechanisms. Additionally, hardness and relative density were also measured, respectively.  相似文献   

5.
WC–Co cemented carbides were prepared via an in situ synthesis method, including the carbothermal prereduction of WO3 and Co2O3 to remove all oxygen and a subsequent carbonization-vacuum sintering process. The experimental results revealed that as the prereduction temperature increased from 1000 to 1200°C, the grain sizes of WC in WC–6Co and WC–12Co cemented carbides increased from .91 to 1.09 and .97 to 1.19 μm, respectively. Further, the fracture toughness of the sintered WC–6Co and WC–12Co cemented carbides increased from 9.97 to 10.83 and 11.11 to 18.30 MPa m1/2, respectively. In contrast, the hardness of the WC–6Co and WC–12Co cemented carbides decreased from 1477 to 1368 and 1351 to 1184 HV30, respectively. For a given prereduction temperature, an increase in Co content can improve the fracture toughness while lowering the hardness. In addition, an increase in the prereduction temperature or Co content led to an increase in the grain size of WC, which resulted in a transgranular fracture as the dominant mode.  相似文献   

6.
A ceramic composite constituting the formula 78 wt% WC–16 wt% TiC–6 wt% Co denoted as the 78WC–16TiC–6Co ceramic composite was fabricated using a powder metallurgy process, by utilising commercially available WC and Co powders, and laboratory produced TiC powders. TiC powders were produced from machining chips of Grade 4 Titanium. Five different procedures were followed for the manufacturing process by altering the amount of the binding agent (stearic acid) and/or compacting pressure and/or sintering regime (temperature and time) and/or mixing process (dry mixing and mechanical alloying). Characterisation investigations conducted on the sintered samples revealed that stearic acid as the binding agent resulted in the decrease of the relative density while mechanical alloying (MA) induced finer microstructures. The 78WC–16TiC–6Co composites manufactured from commercially available and laboratory produced TiC powders using similar process procedures (including MA) exhibited similar characteristics in terms of relative density, hardness, and wear performance.  相似文献   

7.
In order to increase the toughness of WC–6Co cemented carbide, different contents of carbon nanotubes (CNTs) were added to the WC–6Co alloy powder to prepare cemented carbide by low-pressure sintering. The results showed that some of the CNTs were embedded between the grains of WC–6Co cemented carbide, which would hinder the growth of WC grain boundary, thus leading to grain refinement. In addition, CNTs inhibited the formation of decarbonized phase and guided the deflection and bridge of crack to hinder the crack extension. With the increase of CNTs content, the density increased at first and then decreased, and the transverse fracture strength increased at first and then decreased. When the content was 0.2 wt.%, the alloy had the best performance. The density of the alloy was 99.67%; the transverse fracture strength was up to 2937.5 MPa, which is about 100% higher than that of cemented carbide without CNTs. The fracture toughness was 9.84 MPa m1/2, and the hardness was 1924.8HV30.  相似文献   

8.
In this study, the effect of Co addition on microstructural and mechanical properties of WC-B4C–SiC composites sintered by spark plasma sintering (SPS) method was investigated. For this purpose, three batches of WC-B4C–SiC with different contents of Co (10 vol%, 15 vol%, and 20 Vol %) were sintered at 1400 °C. The results of X-ray diffraction (XRD) analysis of the samples indicated the formation of W2B5, W3CoB3 as well as the remained C phases and unreacted SiC phase. It was observed that by increasing the Co content, the amount of W2B5 phase reduces and W3CoB3 and C contents increase. Therefore, W2B5 peaks were not detected in the sample containing 20vol% Co. Relative density values above 97% were obtained for all the composites. However, a decrease was observed in relative density by increasing the Co content in the composites. The highest flexural strength (510 ± 42 MPa), fracture toughness (10.34 ± 0.82 MPa m1/2), and hardness (20.63 ± 0.75 GPa) were also obtained for the sample containing 10vol% Co compared to the other samples. In addition, Transgranular fracture of SiC as well as pulling out of W3CoB3 and W2B5 particles were observed in the fracture surface micrographs of the samples. The presence of micro-cracks in the SiC grains, fracture of W3CoB3 grains, and crack deflection was reported as dominant toughening mechanisms.  相似文献   

9.
The comparison of sintering behavior and mechanical properties of WC–10 wt.%Co, WC–10 wt.%Ni and WC–10 wt.%Fe hard materials produced by high-frequency induction heated sintering (HFIHS) method was accomplished using ultra-fine powder of WC and binders (Co, Ni, Fe). The advantage of this process allows very quick densification to near theoretical density and prohibition of grain growth in nano-structured materials. Highly dense WC–10Co, WC–10Ni and WC–10Fe with a relative density of up to 99% could be obtained with simultaneous application of 60 MPa pressure and induced current within 1 min without significant change in grain size. The hardness and fracture toughness of the dense WC–10Co, WC–10Ni and WC–10Fe composites produced by HFIHS were investigated.  相似文献   

10.
Two sets of Co-cemented tungsten carbide (WC–Co) cutting inserts were sintered using WC powders having different average sized particles (1 and 6 μm). Fine grained WC–Co inserts contained 5.8 wt.% Co and were doped by 0.2 wt.% VC and 0.2 wt.% TaC, which acted as grain growth inhibitors in the liquid-phase sintering. Coarse grained substrates contained 6 wt.% Co and no dopants. Prior to deposition, the inserts were etched using Murakami reagent and then with an acid solution of hydrogen peroxide. The substrates were coated by 31–33-μm diamond films using hot filament chemical vapor deposition (HFCVD) in an atmosphere of 1.5% methane in hydrogen for 14 h, at a substrate temperature of 950 °C. Upon cooling from CVD temperature, only films deposited onto coarse grained inserts were adherent, while films grown on fine grained substrates underwent spontaneous delamination. This fact was due to the presence of a layer of graphitic carbon at the interface between the diamond film and fine grained substrates only. The formation of this sp2-carbon layer correlated well with the observed huge segregation of grain growth inhibitors at the interface between diamond and fine grained substrates.  相似文献   

11.
Well-separated diamond particles were nucleated and grown by hot filament chemical vapor deposition (HFCVD) onto WC–Co cemented carbide pretreated by Murakami’s reagent and H2O2+H2SO4 solution. The adhesive strength of diamond particles to WC–Co cemented carbide was quantitatively determined in terms of interface toughness by directly applying an external load to the CVD diamond particles. From the measurement of the maximum load required to scratch off the particles, we determined that the adhesive toughness was 14 J/m2. This value is more than twice as high as that of CVD diamond on smooth silicon substrate and comparable to the cleavage fracture energy of diamond. The newly developed procedure will allow to check the effectiveness of substrate surface pretreatments for further improving the adhesion level of diamond films on WC–Co.  相似文献   

12.
《Diamond and Related Materials》2000,9(9-10):1749-1752
A new multiple chemical pre-treatment including microwave oxidation, reaction in alkaline solution and cleaning by ultrasonic treatment in acid solution has been performed for free shape cemented WC–Co tools in order to increase the diamond nucleation and to enhance the coating adhesion. High quality diamond films were deposited on such pre-treated substrates by a hot filament chemical vapor deposition (CVD) method using a mixture of acetone and hydrogen gases. After pre-treatment, the surface of the WC–Co substrate becomes slightly rough, but its composition or structure shows no changes identified by X-ray diffraction (XRD). Scanning electron microscopy (SEM) indicates a distribution of uniform micro-roughness WC grains on substrate surface. The results show that the multiple chemical pre-treatment effectively increases the diamond nucleation as well as greatly enhancing the coating adhesion. Especially, it is suitable for free-shape substrates, which may open the way to the use of diamond coatings for coated tool applications.  相似文献   

13.
Structural and mechanical reliability of glass for both conventional and advanced applications is determined by the rate at which it can deform and sustain externally applied static or dynamic strain at the microstructural length scale. Hence, a large number of nanoindentation experiments were conducted on a thin (∼300 μm) commercial soda lime–silica glass with a 150 nm radius Berkovich tip at a constant load of 10,000 μN as a function of variations in the loading rates in the range of 10–20,000 μN/s. The results showed that the nanohardness of the soda lime–silica glass increased by as much as 74% as the loading rate was increased from 10 to 20,000 μN/s. Further, the presence of serrations in load–depth plots and deformation band formations inside the nanoindentaion cavities were more vividly observed in the nanoindentation experiments conducted at lower loading rates rather than those conducted at higher loading rates. These results are explained in terms of shear stress acting underneath the indenter as well as the time scale of interaction between the nanoindenter and the weak links at local microstructural length scale, which owe their origin to the subtle variations in the composition of the given glass.  相似文献   

14.
Chromium nitride (CrNx) and niobium carbide (NbC) films were deposited by magnetron sputtering on Co-cemented tungsten carbide (WC–Co) substrates and diamond deposition was performed by using hot-filament chemical vapor deposition (HFCVD) technique. The CrNx and NbC interlayers have been deposited at different substrate temperatures (TS = 400, 550 and 700 °C). The stability of these interlayers for diamond deposition has been studied by a heat treatment in H2 atmosphere for 60 h at a temperature of 765 °C in the HFCVD reactor. X-ray diffraction (XRD), scanning electron microscopy (SEM) and glow discharge optical emission spectroscopy (GDOES) confirmed that due to this heat treatment the CrNx films transformed into porous films composed of CrNx, Cr3C2, Cr7C3 and Co phases, accompanied by a dramatic loss of nitrogen which is replaced by carbon. It was observed that higher nitrogen contents in the CrNx films reduce the Co diffusion through the CrNx layer. For NbC films, deposited by non-reactive magnetron sputtering from an NbC compound target, the heat treatment in the HFCVD reactor revealed that the films are absolutely stable during the heat treatment with some relaxation of residual stresses up to a factor of about 3. Furthermore it was found that Co diffuses through the NbC films with a TS-dependant accumulation on the NbC film surface. By HFCVD it was possible to deposit adherent diamond coatings on the CrNx and NbC interlayers. However, a reasonable adhesion of diamond on NbC was only obtained after different pre-treatments of the WC–Co substrates. The adhesion seems to be mainly governed by the topography of the WC–Co substrates.  相似文献   

15.
Dense silicon carbide (SiC) ceramics were prepared with 0, 10, 30 or 50 wt% WC particles by hot pressing powder mixtures of SiC, WC and oxide additives at 1800 °C for 1 h under a pressure of 40 MPa in an Ar atmosphere. Effects of alumina or SiC erodent particles and the WC content on the erosion performance of sintered SiC–WC composites were assessed. Microstructures of the sintered composites consisted of WC particles distributed in the equi-axed grain structure of SiC. Fracture surfaces showed a mixed mode of fracture, with a large extent of transgranular fracture observed in SiC ceramics prepared with 30 wt% WC. Crack bridging by WC enhanced toughening of the SiC ceramics. A maximum fracture toughness of 6.7 MPa*m1/2 was observed for the SiC ceramics with 50 wt% WC, whereas a high hardness of 26 GPa was obtained for the SiC ceramics with 30 wt% WC. When eroded at normal incidence, two orders of magnitude less erosion occurred when SiC–WC composites were eroded by alumina particles than that eroded by SiC particles. The erosion rate of the composites increased with increasing angle of SiC particle impingement from 30° to 90°, and decreased with WC reinforcement up to 30 wt%. A minimum erosion wear rate of 6.6 mm3/kg was obtained for SiC–30 wt% WC composites. Effects of mechanical properties and microstructure on erosion of the sintered SiC–WC composites are discussed, and the dominant wear mechanisms are also elucidated.  相似文献   

16.
WC–5TiC–10Co ultrafine cemented carbides were prepared and used for the cutting tool for AISI H13 hardened steel. The effect of cutting parameters on the tool life and tool wear mechanism was investigated, and conventional cemented carbide with the same composition and medium grain size were prepared for comparison. The results showed that WC–5TiC–10Co ultrafine cemented carbides possess higher hardness and transverse rupture strength, and showed better cutting performance than conventional insert with the same cutting condition. Tool life was analyzed by an extended Taylor's tool life equation, indicating that cutting speed played a profound effect on the tool life and wear behavior of both cutting inserts. SEM and EDS analysis revealed that there were major adhesive wear and minor abrasive wear on the rake of WC–5TiC–10Co ultrafine inserts, and increase of cutting speed resulted in a transition from abrasion predominant wear mechanism to adhesive wear on the flank face. As for the conventional inserts, there were combination of more serious abrasive and adhesive wear on the rake and flank. The favorable cutting performance of ultrafine WC–5TiC–10Co inserts was attributed to the higher hardness and less thermal softening during machining.  相似文献   

17.
The effect of different WC grain size additions on the microstructure and grain distribution of Ni–Co coarse crystalline cemented carbide was studied. And then the effect of grain distribution on the mechanical properties of cemented carbide was discussed. The effect of WC grain size on the grain size and coherency of cemented carbide was analyzed by microstructure. And the distribution of grains in the microstructure was investigated by the truncation method. The addition of fine (1.1–1.4 μm), medium (2.3–2.7 μm), and coarse WC (5.6–6.0 μm) particles can increase the nucleation rate of WC grains in the bonded phase. And the higher grain growth driving force can produce the theoretical limitation of nucleation and inhibit the coarsening of WC grains to a certain extent. The WC grain size has an insignificant effect on the frequency of the occurrence of super-coarse grains in coarse crystalline cemented carbide. The average grain size and super coarse grains in microstructure gradually decrease, which promotes the improvement of transverse rupture strength. The increase of the adjacent degree and the decrease of the mean free path reduce which is beneficial to the improvement of the corrosion resistance of the alloy. The best overall performance of the alloy is achieved when fine-grained WC is added.  相似文献   

18.
Cobalt–nickel alloys were electrodeposited in an acid bath containing various ratios of metallic cations. The effect of the plating variables on the composition and morphology of the deposits obtained on vitreous carbon electrodes was investigated. Different proportions of the two metals can be obtained by using different deposition parameters, but at all Co(ii)/Ni(ii) ratios studied, preferential deposition of cobalt occurs and anomalous codeposition takes place. For a fixed solution composition, the nickel content in the deposit is enhanced by increasing the deposition potential. More homogeneous and fine-grained deposits can be obtained by increasing the cobalt(ii)/nickel(ii) ratio in solution and by ensuring that deposition takes place slowly. Deposits of constant composition throughout the depth of the deposit can be obtained only by stirring the solution during the deposition. In addition, the solution must be stirred in order to minimize the increase in local pH and to prevent hydroxide precipitation. An attempt was made to explain the anomalous codeposition. The results suggest the following sequence of events: first, nickel is deposited; then, cobalt(ii) adsorbs onto the freshly deposited nickel and begins to be deposited. The cobalt(ii) adsorption inhibits subsequent deposition of nickel, although it does not block it completely.  相似文献   

19.
In this research, the effect of the volume percentage of diamond additive on the sintering behavior, microstructure, and mechanical properties of WC–Co was investigated. WC–Co/diamond composites with different percentages of 0%, 2.5%, 5%, 7.5%, and 10% by volume of diamond were made by spark plasma sintering at 1300°C and 40 MPa for 5 min. A small amount of phase transformation from the diamond phase to the graphite phase was observed. The amount of graphitization was low due to low temperature and short sintering time. The addition of diamond leads to a significant enhancement in both the hardness and fracture toughness of the composites, overcoming the trade-off between hardness and toughness typically observed in WC-based materials. The sample reinforced with 5% by volume of diamond showed simultaneously the highest hardness (22.9 GPa), the highest fracture toughness (22.7 MPa m1/2), and the highest flexural strength (1896 MPa). The uniform dispersion, good bonding of the superhard diamond phase with the matrix, and the fine microstructure caused the high hardness and toughness of composite. The main effective mechanisms in increasing the fracture toughness of the composite were crack deflection, bridging, and blocking of crack propagation by diamond particles.  相似文献   

20.
《Ceramics International》2022,48(11):15855-15861
Nitrogen plays a key role in tailoring the surface structures in WC–Co–Cubic graded cemented carbides. In this study, graded cemented carbides were sintered at 1450 °C for 2 h in a N-free atmosphere using TiN, ZrN, and HfN as multiple N sources. The elemental and compositional distributions of the resultant cemented carbides were measured to determine the microstructural evolution in the graded surface layer. For alloys incorporated with different N sources, two key characteristics, the residual cubic phase and thickness of the graded layer, were investigated. It was revealed that the thermodynamic formation energies of the cubic nitrides was the main factor to the microstructural evolution. In addition, the hardness distributions in the graded layers were measured using micro-indentation tests. Overall, a relationship between microstructure and hardness was established from the surface to the core of the investigated materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号