首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The spallation resistance of an air plasma sprayed (APS) thermal barrier coating (TBC) to cool-down/reheat is evaluated for a pre-existing delamination crack. The delamination emanates from a vertical crack through the coating and resides at the interface between coating and underlying thermally grown oxide layer (TGO). The coating progressively sinters during engine operation, and this leads to a depth-dependent increase in modulus. Following high temperature exposure, the coating is subjected to a cooling/reheating cycle representative of engine shut-down and start-up. The interfacial stress intensity factors are calculated for the delamination crack over this thermal cycle and are compared with the mode-dependent fracture toughness of the interface between sintered APS and TGO. The study reveals the role played by microstructural evolution during sintering in dictating the spallation life of the thermal barrier coating, and also describes a test method for the measurement of delamination toughness of a thin coating.  相似文献   

2.
《Ceramics International》2022,48(3):3133-3147
Failures in thermal barrier coatings (TBCs) are associated with the build-up of residual stresses that result from thermal cycling, growth strain, and stress relaxation associated with high temperatures. To address these highly coupled processes, three aspects were examined. The first was concerned with the effect of thermal cycling and thermal gradients on the resulting residual stress fields. The second with the dynamic growth of thermally grown oxide (TGO) layer using novel finite volume-finite element algorithms. In the third, we examined the effect of stress relaxation on the (TC/TGO) interface. We modelled these highly coupled processes using transient thermomechanical finite element simulations. The temperature profile and state of oxidation variation with time were imported as a predefined field and solved in ANSYS nonlinear platform. Our results revealed that stress relaxation of the TGO stresses at high temperatures leads to a reduction in the TC/TGO interfacial stresses. They also revealed that the use of the isotropic hardening rule limits the increase in plastic deformation of the bond coat (BC), while the use of kinematic hardening rule leads to ratcheting. Furthermore, we highlighted the importance of considering uneven growth of TGO on the resulting stress field.  相似文献   

3.
Herein, heat transfer from the coating to the substrate during the thermal spraying process is simplified as one-dimensional heat conduction and a formula to express the temperature distribution in the substrate is provided. To achieve this, the spray process was divided into two stages, namely deposition (coating sprayed onto the substrate) and post-deposition (cooling of coating and substrate to atmospheric temperature). The coating was achieved through a layer-by-layer deposition method. Residual stresses in the system (including both the coating and substrate) following deposition of each layer were calculated, as well as those induced by post-deposition. Finally, the proposed formulae were implemented in a real-case example to illustrate the effect of heat transfer with regards to torch velocity on residual stresses. The simulative results were shown to have a better agreement with experimental results at low rather than at high torch velocities. The residual stresses in the coating surface decreased with the increase in heat transfer time. When the heat transfer time exceeded a certain value, a sharp decline in residual stresses was observed.  相似文献   

4.
《Ceramics International》2022,48(13):18021-18034
Air plasma sprayed thermal barrier coatings (TBCs) are widely used in gas turbines to provide thermal insulation for the metallic engine components. During service, the multi-layered and multi-material systems undergo thermal and mechanical degradation. The degradation mechanisms include sintering, phase transformation, residual stress, oxidation, erosion and CMAS attack. The degradation leads to the initiation and propagation of cracks at or near the interface between the topcoat and bond coat, eventually merging into large-scale delamination and resulting in failure of the TBCs. Recent progress in the development of methods for mitigating the detrimental impact of these failure mechanisms via composition and processing modifications has been reviewed. Meanwhile, the applications of newly-emerging materials with superior properties have also been discussed. The review emphasises the relationships between composition, microstructure and properties of TBCs, which is beneficial for the exploration of the advanced TBCs with higher durability.  相似文献   

5.
The yttrium heavily doped La2Zr2O7 solid solutions coatings, with a Y to La molar ratio of 1:1, have been successfully prepared by air plasma spraying technique. The evolution of phase composition, phase structure and thermal conductivity of such coatings with annealing at 1300?°C has been investigated. The results show that, a single pyrochlore structure can be retained for coating after annealing up to 48?h, beyond which the fluorite phase begins to precipitate out. By comparing thermal conductivities to those undoped counterparts at a similar porosity level, we find a considerably flat thermal conductivity versus temperature (k-T) curve, suggesting the existence of a strong phonon scattering source, which is inferred as rattlers. In addition, after the segmentation of the fluorite phase, the thermal conductivity of corresponding coatings rises considerably, indicating that the fluorite phase has a higher thermal conductivity than that of pyrochlore phase. Moreover, while the as-sprayed coatings show a clear indication of radiative thermal conduction beyond 1000?°C, the thermal conductivity of annealed coatings do not show such an uprising trend after 1000?°C, suggesting that the radiative thermal conduction has been greatly suppressed. The reason is proposed as the formation of local dipoles due to local enrichment of certain elements influences the propagation of electromagnetic waves and thus suppresses the radiative thermal conduction.  相似文献   

6.
Air plasma sprayed (APS) thermal barrier coatings (TBCs) are a widely used technology in the gas turbine industry to thermally insulate and protect underlying metallic superalloy components. These TBCs are designed to have intrinsically low thermal conductivity while also being structurally compliant to withstand cyclic thermal excursions in a turbine environment. This study examines yttria-stabilized zirconia (YSZ) TBCs of varying architecture: porous and dense vertically cracked (DVC), which were deposited onto bond-coated superalloys and tested in a novel CO2 laser rig. Additionally, multilayered TBCs: a two-layered YSZ (dense + porous) and a multi-material YSZ/GZO TBC were evaluated using the same laser rig. Cyclic exposure under simulative thermal gradients was carried out using the laser rig to evaluate the microstructural change of these different TBCs over time. During the test, real-time calculations of the normalized thermal conductivity of the TBCs were also evaluated to elucidate information about the nature of the microstructural change in relation to the starting microstructure and composition. It was determined that porous TBCs undergo steady increases in conductivity, whereas DVC and YSZ/GZO systems experience an initial increase followed by a monotonic decrease in conductivity. Microstructural studies confirmed the difference in coating evolution due to the cycling.  相似文献   

7.
Air plasma sprayed yttria-stabilized zirconia thermal barrier coatings are widely applied in gas turbines and aviation engines, which usually contain multifarious and multiscale defects, such as pores, cracks, and amorphous layers. They all significantly lower the thermal conductivity of the coating but in drastically different ways depending on their morphologies and orientations. Establishing an accurate correlation between the microstructure and the thermal conductivity requires not only a precise separation and estimation of different kinds of defects but also a reasonable mathematic model to describe their effect on thermal conductivity. In this research, cross-section ion polishing and image analysis were chosen as a reliable assembly for characterizing multifarious defects of porous coatings, which was almost undamaged compared with the traditionally mechanical polishing. The effect of different microscale defects on the thermal conductivity was respectively and quantitatively studied to build a mathematical model. A thermal resistance induced by amorphous layers was introduced into the model, which was found to have a linear relationship with the amorphous layer concentration. It was also found a linear relationship between the amorphous layer concentration and the spraying times. The predicted thermal conductivity of porous coatings by multifarious-defect-concerned model fits the data measured using the steady heat flow method very well. This research confirms the applicability of image-analysis-based modeling as a simple, reliable, and versatile method for thermal conductivity prediction of porous coating systems.  相似文献   

8.
In this study, Inconel 738 LC superalloy coupons were first sprayed with a NiCoCrAlY bond coat and then with a ceria and yttria stabilized zirconia (CYSZ) top coat by air plasma spraying (APS). After that, the plasma sprayed CYSZ thermal barrier coatings (TBCs) were treated using a Nd:YAG pulsed laser. The effect of laser glazing on the microstructure of the coatings was investigated. The microstructures and surface topographies of both as-sprayed and laser glazed samples were investigated using field emission scanning electron microscope (FESEM) and atomic force microscope (AFM). The phases of the coatings were analyzed with X-ray diffractometry (XRD). The microstructural analysis results revealed that laser surface glazing of ceramic top coat reduced the surface roughness considerably, eliminated the surface porosities and produced a network of continuous cracks perpendicular to the surface. XRD patterns also showed that both as-sprayed and laser glazed top coats consisted of nonequibrium tetragonal (T′) phase.  相似文献   

9.
A thermal spray technology high-velocity oxygen fuel (HVOF) was used to deposit NiCoCrAlY as a bond coating between the titanium alloy substrate and top 8 wt% yttria-stabilized zirconia thermal-barrier coating (TBC) deposited by electron beam-physical vapor deposition (EB-PVD). The thermal cycling and isothermal exposure tests were conducted to evaluate the durability of the TBC. Investigations using OM, SEM, EPMA, and XRD revealed that the thermal-sprayed BC makes the TBC more durable in isothermal exposure tests but more short-lived in thermal cycling tests, in comparison to our previous study in which the BC was prepared by EB-PVD. This is because the thermal-sprayed imperfections, such as microcracks and voids, elevate the diffusion resistance and degrade the mechanical properties of the BC, simultaneously. To current TBC systems in which the BC is deposited by HVOF, thermal failure behaviors—such as the formation of the Ti/Al mixture oxides at some individual places in the BC, and the Ti2Ni gaps formed around the BC/substrate interface—were also discussed.  相似文献   

10.
Thermal barrier coatings (TBCs) play a pivotal role in protecting the hot structures of modern turbine engines in aerospace as well as utility applications. To meet the increasing efficiency of gas turbine technology, worldwide research is focused on designing new architecture of TBCs. These TBCs are mainly fabricated by atmospheric plasma spraying (APS) as it is more economical over the electron beam physical vapor deposition (EB-PVD) technology. Notably, bi-layered, multi-layered and functionally graded TBC structures are recognized as favorable designs to obtain adequate coating performance and durability. In this regard, an attempt has been made in this article to highlight the structure, characteristics, limitations and future prospects of bi-layered, multi-layered and functionally graded TBC systems fabricated using plasma spraying and its allied techniques like suspension plasma spray (SPS), solution precursor plasma spray (SPPS) and plasma spray –physical vapor deposition (PS-PVD).  相似文献   

11.
《Ceramics International》2020,46(4):4824-4831
The thermal barrier coating obtained by atmospheric plasma spraying (APS TBCs) has a distinct lamellar microstructure, in which the splats discontinuous interfaces running parallel to the metal/ceramic interface contribute largely to the reduction in the effective thermal conductivity of APS TBCs. The dependency of such contribution on the topological structure of the interface discontinuity is investigated in the present work. Firstly, the concept of discontinuity of splats interfaces was defined to quantify the splats discontinuous interfaces revealed by microscopic observations. Then, the microstructure model with a random distribution of discontinuous interfaces was established by utilizing the finite element simulation method to investigate the effect of interlayer discontinuity on thermal conductivity of the APS TBCs. Finally, an optimal topological structure of the interface discontinuity was found to be responsible for the lowest effective thermal conductivity of the APS TBCs and typical parametrical tendencies demonstrated.  相似文献   

12.
《Ceramics International》2017,43(10):7797-7803
Nanostructured GdPO4 coatings, designed as the outer layer of double-ceramic-layer thermal barrier coatings (DCL-TBCs), were produced by air plasma spraying (APS). The coatings have close chemical composition to that of the agglomerated particles used for thermal spray. Nanozones with porous structure are embedded in the coating microstructure, having a percentage of ~30%. Hot corrosion tests of the coatings were carried out in V2O5 and Na2SO4+V2O5 salts at 900 °C for 4 h. Results indicate that dense reaction layers, consisting of GdVO4 and Gd4(P2O7)3, form on the coating surfaces, which could suppress further penetration of the molten salts. In the V2O5 molten salt, the reaction layer is thicker and less molten salt trace could be found beneath the layer.  相似文献   

13.
Q.M. Yu  Q. He 《Ceramics International》2018,44(3):3371-3380
Residual stress has a significant influence on the crack nucleation and propagation in thermal barrier coatings (TBC) system. In this work, the residual stress in the air plasma spraying (APS) TBC system during cooling process was numerically studied, and the influence of the material properties of each layer on the residual stress was investigated. The morphologies of the interface were described by a piecewise cosine function, and the amplitude for each segment gradually increases. The elasticity, plasticity and creep of top coat (TC), thermally grown oxide (TGO) layer and bond coat (BC) were considered and the elasticity and creep of the substrate layer were taken into account. The material properties of all layers vary with temperature. The results show that the material properties have complex influence on the residual stress during cooling. The effect of the material properties of TC and BC on the residual stress at the interface is relatively large, and that of TGO and substrate is relatively small. These results provide important insight into the failure mechanism of air plasma spraying thermal barrier coatings, and important guidance for the optimization of thermal barrier coating interfaces.  相似文献   

14.
《Ceramics International》2016,42(9):11118-11125
Nanostructured 4SYSZ (scandia (3.5 mol%) yttria (0.5 mol%) stabilized zirconia) and 5.5 SYSZ (5 mol% scandia and 0.5 mol% yttria) thermal barrier coatings (TBCs) were deposited on nickel-based superalloy using NiCrAlY as the bond coat by plasma spraying process. The thermal shock response of both as-sprayed TBCs was investigated at 1000 °C. Experimental results indicated that the nanostructured 5.5SYSZ TBCs have better thermal shock performance in contrast to 4SYSZ TBCs due to their higher tetragonal phase content and higher fracture toughness of this coating  相似文献   

15.
The residual stresses could cause extensive damage to thermal barrier coatings and even failure. A finite element model of thermal barrier coating system had been designed to simulate the residual stresses and then to analyze the crack nucleation behavior. The distribution of normal and tangential stress components along top coat (TC) / thermally grown oxide (TGO) and TGO / bond coat (BC) interfaces are shown in this work. It is found that the maximum tensile stress along TC/TGO interface occurs in the peak region during heating-up, and that along TGO/BC interface is also located in the peak region, but during the process of cooling-down. A parameter correlating the normal stress component with corresponding tangential one was used to evaluate the interfacial cracks, indicating that cracks will initiate at the peak-off region of TC/TGO interface in the heating-up phase, but for TGO/BC interface, cracks will initiate at the peak position in the cooling-down phase.  相似文献   

16.
Thermal barrier coatings (TBC) allow the metallic internal components of gas turbine engines to operate at elevated temperatures near its melting points. Formation of thermally grown oxide (TGO) layers at the top coat (TC) and bond coat (BC) interface induces cracks in the TC that may lead to complete TBC failure due to spallation. An SEM image-based finite element (FE) model is developed using commercial finite element package ABAQUS to investigate the development of residual stresses resulting from cyclic loading of TBCs. The model includes thermo-mechanical material properties and considers the real interface between the coating layers. The model includes real pores based on an SEM image, taking advantage of image processing techniques. Effect of TC surface roughness and pores on the developed residual stresses during thermal cycling is investigated with respect to different TGO thicknesses. The analysis shows that presence of TC roughness causes stress concentration sites during heating that may force horizontal cracks to initiate and propagate with stress values that are indifferent to the TGO thickness. The pores are found to shift stress concentration regions from the TC/TGO interface to the vicinity of the pores during cooling, and that may cause horizontal cracks to start from within the TC with stresses that increase with TGO thickness. Moreover, the effect of creep for all layers on the generated residual stresses is studied. Considering creep gives lower stresses at the end of cooling, however, stress distribution remains the same with and without creep.  相似文献   

17.
About 6-8 wt% yttria-stabilized zirconia (YSZ) is the industry standard material for thermal barrier coatings (TBC). However, it cannot meet the long-term requirements for advanced engines due to the phase transformation and sintering issues above 1200°C. In this study, we have developed a magnetoplumbite-type SrAl12O19 coating fabricated by atmospheric plasma spray, which shows potential capability to be operated above 1200°C. SrAl12O19 coating exhibits large concentrations of cracks and pores (~26% porosity) after 1000 hours heat treatment at 1300°C, while the total porosity of YSZ coatings progressively decreases from the initial value of ~18% to ~5%. Due to the contribution of porous microstructure, an ultralow thermal conductivity (~1.36 W m−1 K−1) can be maintained for SrAl12O19 coating even after 1000 hours aging at 1300°C, which is far lower than that of the YSZ coating (~1.98 W m−1 K−1). In thermal cyclic fatigue test, the SrAl12O19/YSZ double-ceramic-layer coating undertakes a thermal cycling lifetime of ~512 cycles, which is not only much longer than its single-layer counterpart (~163 cycles), but also superior to that of YSZ coating (~392 cycles). These preliminary results suggest that SrAl12O19 might be a promising alternative TBC material to YSZ for applications above 1200°C.  相似文献   

18.
For a chemical vapor deposition (CVD) coating/substrate system, an improved and optimized numerical model is established to predict the residual thermal stresses. This model takes into account both the normal and bending strains and is developed based on the concept of a misfit strain between coating and substrate. Comparisons are presented between predictions from this model and from finite element analysis. The effects of coating thickness, elastic modulus, temperature difference, and multiple deposition on the residual stresses in the coating/substrate system have also been analyzed in detail. Furthermore, some confirmatory CVD SiC experiments with different layers have also been conducted according to the analysis model. The predictions that the multiple deposition system can relieve the residual thermal stresses and reduce the microcracks in the outermost coating effectively, are consistent with the numerical model.  相似文献   

19.
Nondestructive and accurate measurement of residual stress in ceramic coatings is challenging, but it is crucial to the assessment of coatings failure and life. In this study, for the first time, the thermal‐cycle dependent residual stress in an atmosphere plasma sprayed thermal barrier coating system has been nondestructively and accurately measured using photoluminescence piezo‐spectroscopy. Each thermal cycle consists of a 5‐minute heating held at 1150°C and a 3‐minute water quenching. The measurement was performed within a crack‐susceptible zone in the yttria‐stabilized‐zirconia (YSZ) top coat (TC) closely above the thermally grown oxide layer. A YSZ:Eu3+ sublayer was embedded in TC as a stress sensor. It was found that the initial residual stress was compressive, with a mean value of 240 MPa, which rapidly increased to 395 MPa after 5 thermal cycles (12.5% life) and then increased gradually to the peak of 473 MPa after 25 thermal cycles (62.5% life). After 30 thermal cycles (75% life), the mean stress dropped abruptly to 310 MPa and became highly heterogeneous, with gradual reduction toward final spallation. The heterogeneous stress distribution indicates that many microcracks nucleated at different locations and the spallation occurred due to the coalescence of the microcracks.  相似文献   

20.
Premature spallation of thermal barrier coatings (TBCs) is a critical issue during the service of gas turbines, and nondestructive evaluation is crucial to address this problem. Herein, a novel approach that indicates delamination by measuring the residual stress evolution of thermally grown oxide (TGO) for air plasma spraying (APS) TBCs is proposed and verified via the combination of photoluminescence piezo-spectroscopy (PLPS) and X-ray computed tomography. A mineral-oil-impregnating approach and a cold-mount low-shrinkage epoxy-mounting approach are used to alleviate the signal attenuation by pores and microcracks in APS TBCs, improving the detectable PLPS signal and X-ray transmission for stress measurement and delamination characterization, respectively. We have nondestructively measured the TGO residual stress mapping in APS TBCs and its evolution with oxidation. Furthermore, the evolution of TGO morphology and critical microcracks are obtained by X-ray computed tomography. The synchronous evolution of TGO residual stress, TGO thickness, and critical microcracks as a function of oxidation time is obtained and correlated. The transition point, as experimentally identified, at which the TGO stress starts to drop, agrees well with the critical moment of microcrack coalescence. This directly verifies that the TBC delamination can be effectively indicated by residual stress evolution of TGO in APS TBCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号