首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The spallation resistance of an air plasma sprayed (APS) thermal barrier coating (TBC) to cool-down/reheat is evaluated for a pre-existing delamination crack. The delamination emanates from a vertical crack through the coating and resides at the interface between coating and underlying thermally grown oxide layer (TGO). The coating progressively sinters during engine operation, and this leads to a depth-dependent increase in modulus. Following high temperature exposure, the coating is subjected to a cooling/reheating cycle representative of engine shut-down and start-up. The interfacial stress intensity factors are calculated for the delamination crack over this thermal cycle and are compared with the mode-dependent fracture toughness of the interface between sintered APS and TGO. The study reveals the role played by microstructural evolution during sintering in dictating the spallation life of the thermal barrier coating, and also describes a test method for the measurement of delamination toughness of a thin coating.  相似文献   

2.
Herein, heat transfer from the coating to the substrate during the thermal spraying process is simplified as one-dimensional heat conduction and a formula to express the temperature distribution in the substrate is provided. To achieve this, the spray process was divided into two stages, namely deposition (coating sprayed onto the substrate) and post-deposition (cooling of coating and substrate to atmospheric temperature). The coating was achieved through a layer-by-layer deposition method. Residual stresses in the system (including both the coating and substrate) following deposition of each layer were calculated, as well as those induced by post-deposition. Finally, the proposed formulae were implemented in a real-case example to illustrate the effect of heat transfer with regards to torch velocity on residual stresses. The simulative results were shown to have a better agreement with experimental results at low rather than at high torch velocities. The residual stresses in the coating surface decreased with the increase in heat transfer time. When the heat transfer time exceeded a certain value, a sharp decline in residual stresses was observed.  相似文献   

3.
The yttrium heavily doped La2Zr2O7 solid solutions coatings, with a Y to La molar ratio of 1:1, have been successfully prepared by air plasma spraying technique. The evolution of phase composition, phase structure and thermal conductivity of such coatings with annealing at 1300?°C has been investigated. The results show that, a single pyrochlore structure can be retained for coating after annealing up to 48?h, beyond which the fluorite phase begins to precipitate out. By comparing thermal conductivities to those undoped counterparts at a similar porosity level, we find a considerably flat thermal conductivity versus temperature (k-T) curve, suggesting the existence of a strong phonon scattering source, which is inferred as rattlers. In addition, after the segmentation of the fluorite phase, the thermal conductivity of corresponding coatings rises considerably, indicating that the fluorite phase has a higher thermal conductivity than that of pyrochlore phase. Moreover, while the as-sprayed coatings show a clear indication of radiative thermal conduction beyond 1000?°C, the thermal conductivity of annealed coatings do not show such an uprising trend after 1000?°C, suggesting that the radiative thermal conduction has been greatly suppressed. The reason is proposed as the formation of local dipoles due to local enrichment of certain elements influences the propagation of electromagnetic waves and thus suppresses the radiative thermal conduction.  相似文献   

4.
In this study, Inconel 738 LC superalloy coupons were first sprayed with a NiCoCrAlY bond coat and then with a ceria and yttria stabilized zirconia (CYSZ) top coat by air plasma spraying (APS). After that, the plasma sprayed CYSZ thermal barrier coatings (TBCs) were treated using a Nd:YAG pulsed laser. The effect of laser glazing on the microstructure of the coatings was investigated. The microstructures and surface topographies of both as-sprayed and laser glazed samples were investigated using field emission scanning electron microscope (FESEM) and atomic force microscope (AFM). The phases of the coatings were analyzed with X-ray diffractometry (XRD). The microstructural analysis results revealed that laser surface glazing of ceramic top coat reduced the surface roughness considerably, eliminated the surface porosities and produced a network of continuous cracks perpendicular to the surface. XRD patterns also showed that both as-sprayed and laser glazed top coats consisted of nonequibrium tetragonal (T′) phase.  相似文献   

5.
A thermal spray technology high-velocity oxygen fuel (HVOF) was used to deposit NiCoCrAlY as a bond coating between the titanium alloy substrate and top 8 wt% yttria-stabilized zirconia thermal-barrier coating (TBC) deposited by electron beam-physical vapor deposition (EB-PVD). The thermal cycling and isothermal exposure tests were conducted to evaluate the durability of the TBC. Investigations using OM, SEM, EPMA, and XRD revealed that the thermal-sprayed BC makes the TBC more durable in isothermal exposure tests but more short-lived in thermal cycling tests, in comparison to our previous study in which the BC was prepared by EB-PVD. This is because the thermal-sprayed imperfections, such as microcracks and voids, elevate the diffusion resistance and degrade the mechanical properties of the BC, simultaneously. To current TBC systems in which the BC is deposited by HVOF, thermal failure behaviors—such as the formation of the Ti/Al mixture oxides at some individual places in the BC, and the Ti2Ni gaps formed around the BC/substrate interface—were also discussed.  相似文献   

6.
《Ceramics International》2017,43(10):7797-7803
Nanostructured GdPO4 coatings, designed as the outer layer of double-ceramic-layer thermal barrier coatings (DCL-TBCs), were produced by air plasma spraying (APS). The coatings have close chemical composition to that of the agglomerated particles used for thermal spray. Nanozones with porous structure are embedded in the coating microstructure, having a percentage of ~30%. Hot corrosion tests of the coatings were carried out in V2O5 and Na2SO4+V2O5 salts at 900 °C for 4 h. Results indicate that dense reaction layers, consisting of GdVO4 and Gd4(P2O7)3, form on the coating surfaces, which could suppress further penetration of the molten salts. In the V2O5 molten salt, the reaction layer is thicker and less molten salt trace could be found beneath the layer.  相似文献   

7.
Q.M. Yu  Q. He 《Ceramics International》2018,44(3):3371-3380
Residual stress has a significant influence on the crack nucleation and propagation in thermal barrier coatings (TBC) system. In this work, the residual stress in the air plasma spraying (APS) TBC system during cooling process was numerically studied, and the influence of the material properties of each layer on the residual stress was investigated. The morphologies of the interface were described by a piecewise cosine function, and the amplitude for each segment gradually increases. The elasticity, plasticity and creep of top coat (TC), thermally grown oxide (TGO) layer and bond coat (BC) were considered and the elasticity and creep of the substrate layer were taken into account. The material properties of all layers vary with temperature. The results show that the material properties have complex influence on the residual stress during cooling. The effect of the material properties of TC and BC on the residual stress at the interface is relatively large, and that of TGO and substrate is relatively small. These results provide important insight into the failure mechanism of air plasma spraying thermal barrier coatings, and important guidance for the optimization of thermal barrier coating interfaces.  相似文献   

8.
《Ceramics International》2016,42(9):11118-11125
Nanostructured 4SYSZ (scandia (3.5 mol%) yttria (0.5 mol%) stabilized zirconia) and 5.5 SYSZ (5 mol% scandia and 0.5 mol% yttria) thermal barrier coatings (TBCs) were deposited on nickel-based superalloy using NiCrAlY as the bond coat by plasma spraying process. The thermal shock response of both as-sprayed TBCs was investigated at 1000 °C. Experimental results indicated that the nanostructured 5.5SYSZ TBCs have better thermal shock performance in contrast to 4SYSZ TBCs due to their higher tetragonal phase content and higher fracture toughness of this coating  相似文献   

9.
The residual stresses could cause extensive damage to thermal barrier coatings and even failure. A finite element model of thermal barrier coating system had been designed to simulate the residual stresses and then to analyze the crack nucleation behavior. The distribution of normal and tangential stress components along top coat (TC) / thermally grown oxide (TGO) and TGO / bond coat (BC) interfaces are shown in this work. It is found that the maximum tensile stress along TC/TGO interface occurs in the peak region during heating-up, and that along TGO/BC interface is also located in the peak region, but during the process of cooling-down. A parameter correlating the normal stress component with corresponding tangential one was used to evaluate the interfacial cracks, indicating that cracks will initiate at the peak-off region of TC/TGO interface in the heating-up phase, but for TGO/BC interface, cracks will initiate at the peak position in the cooling-down phase.  相似文献   

10.
Thermal barrier coatings (TBC) allow the metallic internal components of gas turbine engines to operate at elevated temperatures near its melting points. Formation of thermally grown oxide (TGO) layers at the top coat (TC) and bond coat (BC) interface induces cracks in the TC that may lead to complete TBC failure due to spallation. An SEM image-based finite element (FE) model is developed using commercial finite element package ABAQUS to investigate the development of residual stresses resulting from cyclic loading of TBCs. The model includes thermo-mechanical material properties and considers the real interface between the coating layers. The model includes real pores based on an SEM image, taking advantage of image processing techniques. Effect of TC surface roughness and pores on the developed residual stresses during thermal cycling is investigated with respect to different TGO thicknesses. The analysis shows that presence of TC roughness causes stress concentration sites during heating that may force horizontal cracks to initiate and propagate with stress values that are indifferent to the TGO thickness. The pores are found to shift stress concentration regions from the TC/TGO interface to the vicinity of the pores during cooling, and that may cause horizontal cracks to start from within the TC with stresses that increase with TGO thickness. Moreover, the effect of creep for all layers on the generated residual stresses is studied. Considering creep gives lower stresses at the end of cooling, however, stress distribution remains the same with and without creep.  相似文献   

11.
Nondestructive and accurate measurement of residual stress in ceramic coatings is challenging, but it is crucial to the assessment of coatings failure and life. In this study, for the first time, the thermal‐cycle dependent residual stress in an atmosphere plasma sprayed thermal barrier coating system has been nondestructively and accurately measured using photoluminescence piezo‐spectroscopy. Each thermal cycle consists of a 5‐minute heating held at 1150°C and a 3‐minute water quenching. The measurement was performed within a crack‐susceptible zone in the yttria‐stabilized‐zirconia (YSZ) top coat (TC) closely above the thermally grown oxide layer. A YSZ:Eu3+ sublayer was embedded in TC as a stress sensor. It was found that the initial residual stress was compressive, with a mean value of 240 MPa, which rapidly increased to 395 MPa after 5 thermal cycles (12.5% life) and then increased gradually to the peak of 473 MPa after 25 thermal cycles (62.5% life). After 30 thermal cycles (75% life), the mean stress dropped abruptly to 310 MPa and became highly heterogeneous, with gradual reduction toward final spallation. The heterogeneous stress distribution indicates that many microcracks nucleated at different locations and the spallation occurred due to the coalescence of the microcracks.  相似文献   

12.
《Ceramics International》2016,42(7):8338-8350
Calculation of residual stress with finite element method is a basic work in failure mechanism investigation in thermal barrier coating (TBC) system because the residual stress is main driving force for crack nucleation and propagation. In this work, a complicated cosine curve with gradually increasing amplitude was used to simulate interface morphologies between layers so as to study the residual stress behavior during the cooling process in air plasma spraying TBC system by finite element method. The substrate, thermally grown oxide (TGO) and top coat (TC) are considered to be elastic and bond coat (BC) elastic-perfectly plastic. The material properties are all temperature dependent. The stress result comparison between models with and without substrate shows the effect of substrate on the residual stress distribution around layers interfaces should not be ignored as the substrate influences the value of normal residual stress as well as the stress distribution along undulating interfaces. Then the model with substrate was used to study the residual stress evolution along interfaces during cooling down from the temperature of 1000 °C to room temperature. The influences of the thickness of TGO and the amplitude and wavelength of interface on the residual stress distributions near interfaces were considered. The results show that these influences are very complicated. Meanwhile, it's found that the hybrid roughness parameter containing information for height and spacing is more suitable to describe the interface complicacy. The results facilitate understanding the failure mechanism relevant to interface morphology and TGO thickness.  相似文献   

13.
Dynamic wetting failure was observed in the simple dip coating flow with a series of substrates, which had a rough side and a comparatively smoother side. When we compared the air entrainment speeds on both sides, we found a switch in behaviour at a critical viscosity. At viscosity lower than a critical value, the rough side entrained air at lower speeds than the smooth side. Above the critical viscosity the reverse was observed, the smooth side entraining air at lower speed than the rough side. Only substrates with significant roughness showed this behaviour. Below a critical roughness, the rough side always entrained air at lower speeds than the smooth side. These results have both fundamental and practical merits. They support the hydrodynamic theory of dynamic wetting failure and imply that one can coat viscous fluids at higher speeds than normal by roughening substrates. A mechanism and a model are presented to explain dynamic wetting failure on rough surfaces.  相似文献   

14.
In this study, substrates of Inconel 738 LC superalloy coupons were first sprayed with a NiCoCrAlY bondcoat and then with a ceria and yttria stabilized zirconia (CYSZ; ZrO2−25 wt%CeO2−2.5 wt%Y2O3) topcoat by air plasma spraying (APS). Hot corrosion studies of plasma sprayed thermal barrier coatings (TBCs) were conducted in 45 wt%Na2SO4+55 wt%V2O5 molten salt at 1000 °C for 30 h. The results showed that the coating defects, such as pores and microcracks play important roles as effective paths for the salt penetration in hot corrosion. Based on the results, the reaction between molten salt and stabilizers of zirconia (Y2O3 and CeO2), the formation of YVO4, CeVO4 and CeO2 crystals, the detrimental phase transformation of zirconia from tetragonal to monoclinic due to the depletion of stabilizers and finally, the creation of stresses were recognized to be in the degradation mechanism of CYSZ ceramic coatings in the presence of molten sulfate–vanadate salt.  相似文献   

15.
Sintering neck is a featured microstructure that may have significant effect on the sintering behaviour of air-plasma-sprayed thermal barrier coating system (APS TBCs). Based on experimental observations, a multi-necking wedge-shaped model for the sintering of APS TBCs was proposed by considering the sintering stress as surface tension and by employing the thermal-elasto-viscoplastic constitutive relation. Deformation pattern, stress distribution, sintering induced shrinkage, stiffening behaviour and temperature field were analysed by using finite element method. It is shown that the formation of sintering neck significantly affects thermal and mechanical properties related to sintering. Mechanisms of thermal and mechanical degradation induced by sintering were further elucidated.  相似文献   

16.
Suspension plasma spraying (SPS) as a potential technique to prepare thermal barrier coatings (TBCs) has been attracting more and more attention. However, most reports on SPS were carried out in the atmosphere. Given the unique features of in-flight particles and plasma jets under low pressure, the resulting coatings are expected to be different from those under atmospheric pressure. In this article, yttria-stabilized zirconia (YSZ) thermal barrier coatings were prepared using suspension plasma spraying under different environmental pressures. The results show that as the environmental pressure decreased, the column-like structural coating turned into a vertical crack segmented structure, as well as a dramatic decrease in surface roughness. More nanoparticle agglomerates were formed in the coating under lower environmental pressures. The real porosity of the coating increased with a decrease in environmental pressure.  相似文献   

17.
An approach to make air plasma sprayed (APS) thermal barrier coatings (TBCs) with the enhanced strain and damage tolerance was reported, using a novel hollow spheres produced by electro‐spraying (ESP) technique. Compared with agglomerated & sintered (A&S) and hollow spherical (HOSP) yttria‐stabilized zirconia (YSZ) powders, the ESP powder showed a unique network microstructure and the TBCs exhibited a 2‐3 times longer thermal cycling lifetime. The splat morphology and the top coats microstructure were investigated. Some semi‐melted ESP particles were observed in the as‐sprayed top coat. The indentation coupled with the Raman mapping technique was employed to evaluate the strain and damage tolerance of the TBCs. The coatings deposited by the ESP powder show a lower in‐plane stiffness determined by three‐point bending tests. It is proposed that the superior performance is attributed to the lower amount of the short microcracks (0.5‐4 μm) with low angle (<45°) and the semi‐melted ESP particles remained in the YSZ top coat.  相似文献   

18.
《Ceramics International》2023,49(3):4795-4806
Thick thermal barrier coatings (TTBCs) have been developed to increase the lifetime of hot section parts in gas turbines by increasing the thermal insulating function. The premeditated forming of segmentation cracks was found to be a valuable way for such an aim without adding a new layer. The TTBC introduced in the current study are coatings with nominal thickness ranging from 1 to 1.1 consisting of MCrAlY bond coat and 8YSZ top coat deposited by air plasma spray technique (APS). TTBCs with segmented crack densities of 0.65 mm?1 (type-A) and 1 mm?1 (type-B) were deposited on a superalloy substrate by adjusting the coating conditions. It was found that the substrate temperature has an influential role in creating the segmentation crack density. The crack density was found to increase with substrate temperature and liquid splat temperature. The two types of coatings (type-A and B) with different densities of segmentation crack were heat-treated at 1000 °C (up to 100 h) and 1100 °C (up to 500 h). The variation of hardness measured by indentation testing indicates a similar trend in both types of coatings after heat treatments at 1000 °C and 1100 °C. Weibull analysis of results demonstrates that higher preheating coating during the deposition results in a denser YSZ coating. The growth rate of TGO for TTBCs was evaluated for cyclic and isothermal oxidation routes at 1000 °C and 1100 °C. The TGO shows the parabolic trend for both two types of coatings. The Kps value for two oxidation types is between 5.84 × 10?17 m2/s and 6.81 × 10?17 m2/s. Besides, the type B coating endures a lifetime of more than 40 cycles at thermal cycling at 1000 °C.  相似文献   

19.
Samarium strontium aluminate (Sm2SrAl2O7-SSA) and Yttria-stabilized zirconia (YSZ) thermal barrier coatings (TBCs) were developed on NiCrAlY bond coated Inconel 718 superalloy substrate using air plasma spray process. The hot corrosion study was conducted in simulated gas turbine environments (molten mixtures of 50?wt% Na2SO4 + 50?wt% V2O5 and 90?wt% Na2SO4 + 5?wt% V2O5 + 5?wt% NaCl) for two different temperatures of 700 and 900?°C. A developed SSA TBCs showed about 8% and 22% lower lifetime at 700 and 900?°C, respectively than YSZ TBCs in 50?wt% Na2SO4 +?50?wt% V2O5 (vanadate). The hot corrosion life of SSA TBCs being found about 13% and 39% lower than YSZ TBCs in 90?wt% Na2SO4 +?5?wt% V2O5 +?5?wt% NaCl (chloride) at 700 and 900?°C, respectively. X-ray diffraction results showed the formation of SmVO4, SrV2O6, and SrSO4 as a major hot corrosion product in 50?wt% Na2SO4 +?50?wt% V2O5 and 90?wt% Na2SO4 +?5?wt% V2O5 +?5?wt% NaCl environments respectively for SSA TBCs. Similarly, YSZ TBCs also showed YVO4 as hot corrosion product in vanadate and chloride environments. Both the TBCs suffer a more severe hot corrosion attack in chloride environment at 900?°C. The leaching of Sr2+ and Y3+ ions from SSA and YSZ respectively play a vital role in the destabilization of coating in vanadate and chloride environments at 700 and 900?°C. In both SSA and YSZ TBCs, the leaching of ion has significantly low influence as compared to attack by chloride ions at the bond coat-top coat interface in the presence of chloride environment. The hot corrosion resistance of SSA TBCs was improved three times higher in the presence of MgO and NiO inhibitor in vanadate environment at 900?°C mainly due to the formation of a stable Ni3V2O8 phase at the surface.  相似文献   

20.
Magnetoplumbite‐type LaMgAl11O19 ceramic has been proposed as one of promising candidates for the next generation thermal barrier coatings (TBCs) due to its low thermal conductivity. However, LaMgAl11O19 shows poor water‐resistance with significant weight loss at elevated temperatures in water‐containing atmosphere. In this work, we revealed that the essential reason for the poor water‐resistance of magnetoplumbite‐type LaMgAl11O19 ceramic is Mg2+ migration from the intrinsic site under moisture environment. And then an effective approach was proposed to improve its anti‐deliquescent property by completely substituting divalent alkaline earth ions Mg2+ with Zn2+. Finally, a panoscopic strategy was proposed to further lower thermal conductivity through co‐substituting La and Zn sites in LaZnAl11O19 with trivalent and divalent transition metal ions. The mechanism for the lowered thermal conductivity is due to the panoscopic approach, which providing all‐scale hierarchical architectures of phonon scattering mechanisms. The excellent anti‐moisture performance and ultralow thermal conductivity endow the LaZnAl11O19 based ceramics as a kind of promising candidates for advanced thermal barrier coatings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号