首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
In the present work, the effect of SiO2 and Al2O3 nanoparticles on compressive strength of ash-based geopolymers with different mixtures of rice husk ash, fly ash, nanoalumina and nanosilica has been predicted by gene expression programming. The models were constructed by 12 input parameters, namely the water curing time, the rice husk ash content, the fly ash content, the water glass content, NaOH content, the water content, the aggregate content, SiO2 nanoparticle content, Al2O3 nanoparticle content, oven curing temperature, oven curing time and test trial number. The value for the output layer was the compressive strength. According to the input parameters in gene expression programming models, the data were trained and tested, and the effects of SiO2 and Al2O3 nanoparticles on compressive strength of the specimens were predicted with a tiny error. The results indicate that gene expression programming model is a powerful tool for predicting the effect of nanoparticles on compressive strength of the geopolymers in the considered range.  相似文献   

2.
The engineering properties of rocks play a significant role in planning and designing of mining and civil engineering projects. A laboratory database of mechanical and engineering properties of rocks is always required for site characterization and mineral exploitation. Due to discontinuous and variable nature of rock masses, it is difficult to obtain all physicomechanical properties of rocks precisely. Prediction of unconfined compressive strength from seismic wave velocities (Compressional wave, Shear wave) and density of rock using generalized regression neural network (GRNN) and adaptive neuro-fuzzy inference systems (ANFIS) can be appropriate and alternate methods to minimize the time and cost of tests. GRNN and ANFIS models were trained with 41 data sets using conjugate gradient descent algorithms and hybrid learning algorithm, respectively. Performance of both the models was examined with 15 testing data sets. In the present study, obtained network performance indices such as correlation coefficient, mean absolute percentage error, root mean square error and variance account for indicate high performance of predictive capability of GRNN system and closer to actual data over the ANFIS.  相似文献   

3.
Deformation modulus of a rock mass is one of the crucial parameters used in the design of surface and underground rock engineering structures. Determination of this parameter by testing cylindrical core samples is almost impossible due to the presence of discontinuities. Due to the problems in determining the deformability of jointed rock masses at the laboratory-scale, various in situ test methods such as plate loading tests, dilatometer etc. have been developed. Although these methods are currently the best techniques, they are expensive and time-consuming, and present operational problems. To overcome this difficulty, in this paper, presents the results of the application of hybrid support vector regression (SVR) with harmony search algorithm , differential evolution algorithm and particle swarm optimization algorithm (PSO). The optimized models were applied to available data given in open source literature and the performance of optimization algorithm was assessed by virtue of statistical criteria. In these models, rock mass rating (RMR), depth, uniaxial compressive strength of intact rock (UCS) and elastic modulus of intact rock (E i) were utilized as the input parameters, while the deformation modulus of a rock mass was the output parameter. The comparative results revealed that hybrid of PSO and SVR yield robust model which outperform other models in term of higher squared correlation coefficient (R 2) and variance account for (VAF) and lower mean square error (MSE), root mean squared error (RMSE) and mean absolute percentage error (MAPE).  相似文献   

4.

In the present work, compressive strength of ash-based geopolymers with different mixtures of rice husk ash, fly ash, nano alumina, and nano silica has been predicted by artificial neural networks. The neural network models were constructed by 12 input parameters including the water curing time, the rice husk ash content, the fly ash content, the water glass content, NaOH content, the water content, the aggregate content, SiO2 nanoparticles content, Al2O3 nanoparticles content, oven curing temperature, oven curing time, and test trial number. The value for the output layer was the compressive strength. According to the input parameters in feed-forward back-propagation algorithm, the constructed networks were trained, validated, and tested. The results indicate that artificial neural networks model is a powerful tool for predicting the compressive strength of the geopolymers in the considered range.

  相似文献   

5.

This article introduces an adaptive network-based fuzzy inference system (ANFIS) model and two linear and nonlinear regression models to predict the compressive strength of geopolymer composites. Geopolymers are highly complex materials which involve many variables which make modeling its properties very difficult. There is no systematic approach in the mix design for geopolymers. The amounts of silica modulus, Na2O content, w/b ratios, and curing time have a great influence on the compressive strength. In this study, by developing and comparing parametric linear and nonlinear regressions and ANFIS models, we dealt with predicting the compressive strength of geopolymer composites for possible use in mix-design framework considering the mentioned complexities. ANFIS model developed by generalized bell-shaped membership function was recognized the best approach, and the prediction results of linear and nonlinear regression models as empirical methods showed the weakness of these models comparing ANFIS model.

  相似文献   

6.
The focus of this study is to use Monte Carlo method in fuzzy linear regression. The purpose of the study is to figure out the appropriate error measures for the estimation of fuzzy linear regression model parameters with Monte Carlo method. Since model parameters are estimated without any mathematical programming or heavy fuzzy arithmetic operations in fuzzy linear regression with Monte Carlo method. In the literature, only two error measures (E1 and E2) are available for the estimation of fuzzy linear regression model parameters. Additionally, accuracy of available error measures under the Monte Carlo procedure has not been evaluated. In this article, mean square error, mean percentage error, mean absolute percentage error, and symmetric mean absolute percentage error are proposed for the estimation of fuzzy linear regression model parameters with Monte Carlo method. Moreover, estimation accuracies of existing and proposed error measures are explored. Error measures are compared to each other in terms of estimation accuracy; hence, this study demonstrates that the best error measures to estimate fuzzy linear regression model parameters with Monte Carlo method are proved to be E1, E2, and the mean square error. One the other hand, the worst one can be given as the mean percentage error. These results would be useful to enrich the studies that have already focused on fuzzy linear regression models.  相似文献   

7.
In the present work, compressive strength of geopolymers made from seeded fly ash and rice husk–bark ash has been predicted by adaptive network-based fuzzy inference systems (ANFIS). Different specimens, made from a mixture of fly ash and rice husk–bark ash in fine and coarse forms and a mixture of water glass and NaOH mixture as alkali activator, were subjected to compressive strength tests at 7 and 28 days of curing. The curing regimes were different: one set of the specimens were cured in water at room temperature until 7 and 28 days and the other sets were oven-cured for 36 h at the range of 40–90°C and then cured at room temperature until 7 and 28 days. A model based on ANFIS for predicting the compressive strength of the specimens has been presented. To build the model, training and testing using experimental results from 120 specimens were conducted. The used data as the inputs of ANFIS models are arranged in a format of six parameters that cover the percentage of fine fly ash in the ashes mixture, the percentage of coarse fly ash in the ashes mixture, the percentage of fine rice husk–bark ash in the ashes mixture, the percentage of coarse rice husk–bark ash in the ashes mixture, the temperature of curing, and the time of water curing. According to these input parameters in the ANFIS models, the compressive strength of each specimen was predicted. The training and testing results in ANFIS models showed a strong potential for predicting the compressive strength of the geopolymeric specimens.  相似文献   

8.
Fungal growth leads to spoilage of food and animal feeds and to formation of mycotoxins and potentially allergenic spores. There is a growing interest in modelling microbial growth as an alternative to time-consuming, traditional, microbiological enumeration techniques. Several statistical models have been reported to describe the growth of different micro-organisms however the nature of neural networks, as highly non-linear approximator schemes, considers them as an alternative methodology. The application of neural networks in predictive microbiology is presented in this paper. This technique was used to build up a model of the joint effect of water activity, pH level and temperature to predict the maximum specific growth rate of the ascomycetous fungus Monascus ruber. Neural network and polynomial models were compared against the experimental data using six statistical indices namely, coefficient of determination (R2), root mean square error (RMSE), mean relative percentage error (MRPE), mean absolute percentage error (MAPE), standard error of prediction (SEP), bias (Bf) and accuracy (Af) factors. Graphical plots were also used for model comparison. The performance of the learning-based systems provide encouraging results while sensitivity analysis showed that from the three environmental factors the most influential on fungal growth was temperature, followed by water activity and pH to a lesser extend. Neural networks offer an alternative and powerful technique to model microbial kinetic parameters and could thus become an additional tool in predictive mycology.  相似文献   

9.
This study presents forecast of highway casualties in Turkey using nonlinear multiple regression (NLMR) and artificial neural network (ANN) approaches. Also, the effect of railway development on highway safety using ANN models was evaluated. Two separate NLMR and ANN models for forecasting the number of accidents (A) and injuries (I) were developed using 27 years of historical data (1980–2006). The first 23 years data were used for training, while the remaining data were utilized for testing. The model parameters include gross national product per capita (GNP-C), numbers of vehicles per thousand people (V-TP), and percentage of highways, railways, and airways usages (TSUP-H, TSUP-R, and TSUP-A, respectively). In the ANN models development, the sigmoid and linear activation functions were employed with feed-forward back propagation algorithm. The performances of the developed NLMR and ANN models were evaluated by means of error measurements including mean absolute percentage error (MAPE), mean absolute error (MAE), root mean square error (RMSE), and coefficient of determination (R 2). ANN models were used for future estimates because NLMR models produced unreasonably decreasing projections. The number of road accidents and as well as injuries was forecasted until 2020 via different possible scenarios based on (1) taking TSUPs at their current trends with no change in the national transport policy at present, and (2) shifting passenger traffic from highway to railway at given percentages but leaving airway traffic with its current trend. The model results indicate that shifting passenger traffic from the highway system to railway system resulted in a significant decrease on highway casualties in Turkey.  相似文献   

10.
Unconfined compressive strength (UCS) of rocks is one of the most important parameters in rock engineering, engineering geology, and mining projects. In the laboratory determination of UCS, high-quality samples are necessary; in which preparing of core samples has several limits, as it is difficult, expensive, and time-consuming. For this, development of predictive models to determine the UCS of rocks seems to be an attractive research. In this study, an intelligent approach based on the Mamdani fuzzy model was utilized to predict UCS of rock surrounding access tunnels in longwall coal mining. To approve the capability of this approach, the obtained results are compared to the results of statistical model. A database containing 93 rock sample records, ranging from weak to very strong rock types, was used to develop and test the models. For the evaluation of models performance, determination coefficient (R 2), root mean square error, and variance account for indices were used. Based on this comparison, it was concluded that performance of fuzzy model is considerably better than statistical model. Also, the fuzzy model results indicate very close agreement for the UCS with the laboratory measurements. Furthermore, the fuzzy model sensitivity analysis shows that Schmidt hardness and porosity are the most and least effective parameters on the UCS, respectively.  相似文献   

11.

In the present study, compressive strength results of geopolymers produced by ordinary Portland cement (OPC) as aluminosilicate source have been modeled by artificial neural networks. Six main factors including NaOH concentration, water glass to NaOH weight ratio, alkali activator to cement weight ratio, oven curing temperature, oven curing time and water curing regime each at 4 levels were considered for designing. A total of 32 experiments were conducted according to the L32 array proposed by the method. The neural network models were constructed by 10 input parameters including NaOH concentration, water glass to NaOH weight ratio, alkali activator to cement weight ratio, oven curing temperature, oven curing time, water curing regime, water glass content, NaOH content, Portland cement content and test trial number. The value for the output layer was the compressive strength. According to the input parameters in feed-forward back-propagation algorithm, the constructed networks were trained, validated and tested. The results indicate that artificial neural networks model is a powerful tool for predicting the compressive strength of the geopolymers in the considered range.

  相似文献   

12.
肖雅静  李旭  郭欣 《工矿自动化》2020,46(3):100-104
根据煤矿机械振动信号高低频组成成分变化规律的差异,提出了一种基于经验模态分解(EMD)和支持向量机(SVM)的煤矿机械振动信号组合预测方法。将滚动轴承振动信号进行EMD分解,得到相对平稳的本征模态函数(IMF)分量,并将波动程度相近的IMF分量进行重构,得到高频子序列和低频子序列,采用SVM分别对高频子序列和低频子序列进行预测,将2个预测结果叠加,得到最终预测值。选取轴承实验数据对组合预测方法的有效性进行验证,结果表明该方法的均方根误差、平均绝对误差和平均绝对百分比误差均小于直接预测方法。将该组合预测方法应用于某选煤厂主井带式输送机滚动轴承状况预测,预测结果与实际情况相符。  相似文献   

13.
This paper investigates the use of wavelet ensemble models for high performance concrete (HPC) compressive strength forecasting. More specifically, we incorporate bagging and gradient boosting methods in building artificial neural networks (ANN) ensembles (bagged artificial neural networks (BANN) and gradient boosted artificial neural networks (GBANN)), first. Coefficient of determination (R2), mean absolute error (MAE) and the root mean squared error (RMSE) statics are used for performance evaluation of proposed predictive models. Empirical results show that ensemble models (R2BANN=0.9278, R2GBANN=0.9270) are superior to a conventional ANN model (R2ANN=0.9088). Then, we use the coupling of discrete wavelet transform (DWT) and ANN ensembles for enhancing the prediction accuracy. The study concludes that DWT is an effective tool for increasing the accuracy of the ANN ensembles (R2WBANN=0.9397, R2WGBANN=0.9528).  相似文献   

14.
This study develops an improved fuzzy time series models for forecasting short-term series data. The forecasts were obtained by comparing the proposed improved fuzzy time series, Hwang’s fuzzy time series, and heuristic fuzzy time series. The tourism from Taiwan to the United States was used to build the sample sets which were officially published annual data for the period of 1991–2001. The root mean square error and mean absolute percentage error are two criteria to evaluate the forecasting performance. Empirical results show that the proposed fuzzy time series and Hwang’s fuzzy time series are suitable for short-term predictions.  相似文献   

15.
The uniaxial compressive strength (UCS) of rocks is an important intact rock parameter, and it is commonly used for various engineering applications. This parameter is mainly controlled by the mineralogical and textural characteristics of rocks. In this study, a soft computing method, an adaptive neuro-fuzzy inference system (ANFIS), was employed to estimate UCS from the mineral contents of certain granitic rocks selected from Turkey; nonlinear multiple regression analysis was then employed to validate these estimations. Five nonlinear multiple regressions and ANFIS models were constructed with three inputs: quartz, orthoclase and plagioclase. To determine the optimal model, various performance indices (R, values account for and root mean square error) were determined, and the model obtained from dataset #3 was selected as the optimal model. The coefficients of correlation for the nonlinear multiple regression and ANFIS models were 0.87 and 0.91, respectively. Thus, both models yielded acceptable results, and the ANFIS is a suitable method for estimating the UCS of rocks.  相似文献   

16.
This paper investigates the impacts of fuzzy genetic (FG), a new fuzzy logic model with genetic algorithm, artificial neural networks (ANN) and general linear model (GLM) approaches on abrasive wear of concrete. For this purpose, experimental studies were made to investigate the influence on wear of the following input parameters: hematite, cement, compressive strength and different loads on the experiments. In these models, 60 data sets were used. For training set, 48 data (80 %) were randomly selected and the residual data (12 data, 20 %) were test set. Model results were compared with experimental results. In this paper, main model performance criterion was root mean square errors. Also, sum of squared error and determination coefficient statistics were used as comparing criteria for the evaluation of models’ performances. Comparison results indicate that FG models are superior to ANN and GLM models in modeling of influence hematite, cement, compressive strength and loads on wear of concrete.  相似文献   

17.
ABSTRACT

A method for predicting the dynamic spatio-temporal variations of the normalized difference vegetation index (NDVI) based on precipitation is proposed using combined nonlinear autoregressive with exogenous input (NARX) networks and artificial neural networks (ANNs). The proposed method is validated by applying to predict the spatio-temporal NDVI for the Hulunbuir grassland located in Inner Mongolia, China. The results show the good predictive ability for the spatio-temporal variations of NDVI with the mean absolute percentage error of 11.59%, mean absolute error of 7.11 × 10?2 and root mean square error of 8.06 × 10?2, respectively. The approach presented in the paper can be further used as the guidance to reduce the occurrence of overgrazing in the arid and semi-arid grasslands.  相似文献   

18.
Abstract: Although the use of predictive models in rock engineering and engineering geology is an important issue, some simple and multivariate regression techniques traditionally employed in these areas have recently been challenged by the use of fuzzy inference systems and artificial neural networks. The purpose of this study was to construct some predictive models to estimate the uniaxial compressive strength of some clay-bearing rocks, depending on examination of their slake durability indices and clay contents. For this purpose, the simple and nonlinear multivariable regression techniques and the Mamdani fuzzy algorithm are compared in terms of their accuracy. To increase the accuracy of the Mamdani fuzzy inference system, the weighted if–then rules are extracted. To compare the predictive performances of the models, the statistical performance indices (root mean square error and variance account for) are calculated and the results are discussed. The indices reveal that the fuzzy inference system has a slightly higher prediction capacity than the regression models. The basic reason for the higher performance of the fuzzy inference system is the flexibility of the fuzzy approach.  相似文献   

19.
In this paper, artificial neural networks (ANNs), genetic algorithm (GA), simulated annealing (SA) and Quasi Newton line search techniques have been combined to develop three integrated soft computing based models such as ANN–GA, ANN–SA and ANN–Quasi Newton for prediction modelling and optimisation of welding strength for hybrid CO2 laser–MIG welded joints of aluminium alloy. Experimental dataset employed for the purpose has been generated through full factorial experimental design. Laser power, welding speeds and wires feed rate are considered as controllable input parameters. These soft computing models employ a trained ANN for calculation of objective function value and thereby eliminate the need of closed form objective function. Among 11 tested networks, the ANN with best prediction performance produces maximum percentage error of only 3.21%. During optimisation ANN–GA is found to show best performance with absolute percentage error of only 0.09% during experimental validation. Low value of percentage error indicates efficacy of models. Welding speed has been found as most influencing factor for welding strength.  相似文献   

20.
Speaker localization is a technique to locate and track an active speaker from multiple acoustic sources using microphone array. Microphone array is used to improve the speech quality of recorded speech signal in meeting room and other places. In this work, the time delay estimation between source and each microphone is calculated using a localization method called time differences of arrival (TDOA). TDOA localization consists of two steps namely (a) a time delay estimator and (b) a localization estimator. For time delay estimation, the generalized cross-correlation using phase transform, the generalized cross correlation using maximum likelihood, linear prediction (LP) residual and the Hilbert envelope of the LP residual are chosen for estimating the location of a person. A new speaker localization algorithm known as group search optimization (GSO) algorithm is proposed. The performance of this algorithm is analyzed and compared with Gauss–Newton nonlinear least square method and genetic algorithm. Experimental results show that the proposed GSO method outperforms the other methods in terms of mean square error, root mean square error, mean absolute error, mean absolute percentage error, euclidean distance and mean absolute relative error.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号