首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
高纯硫酸锰行业采用氧化锰矿还原焙烧后浸出制取硫酸锰溶液,通常在除钾钠过程中需要额外加入大量的硫酸亚铁,成本较高。本文中介绍采用含铁量较高的南非氧化锰矿焙烧后浸出的试验,在除钾钠过程中不额外添加硫酸亚铁,仅利用矿石中含铁成分进行溶液中钾钠的去除,试验表明除钾钠效果良好,滤液钾含量2.4mg/l,钠含量5.4mg/l。  相似文献   

2.
开展从工业硫酸锰制备电池级硫酸锰的试验研究,以硫酸铁做碱金属元素脱除剂,在不同加入量、加入方式、反应温度和加入不同晶种倍数情况下的碱金属脱除效果。结果表明:硫酸铁加入量为理论量的2.0倍,硫酸铁分3次在0,1,2 h时间段内加入,反应温度为98℃时,硫酸锰溶液中钠离子含量可以降到100 mg/L以下,外加晶种与升高反应温度均不如加钾新生成的钾矾除钠效果好。  相似文献   

3.
周玉琳  叶龙刚 《湿法冶金》2022,41(3):254-259
研究了用硫酸锰与高锰酸钾直接混合制备新生态氧化锰,并用于从硫酸锌溶液中选择性除铊。结果表明:所制备氧化锰为近球形纳米颗粒,具有较大比表面积,可吸附去除溶液中的铊;在氧化锰加入量3 g/L、吸附时间60 min、温度30℃条件下,铊去除率达97.53%,吸附后液中铊质量浓度降至3.48 mg/L。新生态氧化锰对铊具有较好的选择吸附性和富集效果,溶液中其他杂质离子几乎不被吸附,有利于吸附渣的后续处理。  相似文献   

4.
以含锰反萃液为原料,经针铁矿法除铁、硫化除重金属、碳化、洗涤制备了合格高纯碳酸锰。考察了终点pH、反应温度对除铁率的影响和(NH4)2S加入量、温度、反应时间对重金属去除率的影响,结果表明:在pH=4.0、反应温度95℃的条件下可将铁除至1.5 mg/L以下;除铁滤液加入2.2倍计量比的(NH4)2S,在反应温度35℃、反应时间60 min的条件下,Ni、Co、Zn可降低至1 mg/L以下;除重金属滤液加入碳酸氢铵调节pH在7.0~7.2,过滤、洗涤,获得满足HG/T 2836—2011(Ⅰ型)产品标准的合格高纯碳酸锰,锰回收率为93.9%。  相似文献   

5.
氟盐沉淀法除钙、镁是制备高纯硫酸锰溶液最普遍的方法,但引入的氟需进一步去除。针对含氟硫酸锰溶液,本文提出溶剂萃取法分离回收氟的新技术,主要包含溶剂萃取分离氟、氧化锰循环反萃氟两个过程。在硫酸锰溶液初始pH为1.9,有机相组成为60%TBP+40%磺化煤油,相比为2∶1,萃取时间3 min的条件下,经过室温五级逆流萃取,硫酸锰溶液中的氟可以降至35 mg/L以下;在氧化锰添加量为理论量的1.0倍,相比5∶1,反萃时间1 h,反应温度298 K的最佳反萃条件下,氧化锰循环反萃率可达98.08%以上,反萃过程析出的氟化锰可以返回用于硫酸锰溶液除钙、镁。相较于现有氟反萃工艺,新技术可在深度除氟的同时实现氟的循环利用。  相似文献   

6.
针对软锰矿烟气脱硫浸出液中铁、铝含量较高的问题,提出了稀释溶液法与碳酸锰中和沉淀法相结合同步去除铁、铝新方法,考察了溶液稀释倍数、温度、碳酸锰加入量、H2O2加入量等对铁、铝去除效果的影响,对沉渣进行了XRD分析。结果表明:在溶液稀释3.6倍、MnCO3加入量60g/L、H2O2加入量10mL/L、反应温度90℃条件下,铁去除率为99%,铝去除率为96%;XRD分析结果表明,沉渣中的铁、铝主要以FeOOH和Al(OH)3形式存在,说明铁水解成针铁矿、铝水解成Al(OH)3而去除。  相似文献   

7.
用不同K~+浓度的铝酸钠溶液进行了含钾铝土矿的拜耳法溶出试验和溶液脱硅试验。结果表明,在30.19~301.94g/L内,溶液中K~+浓度的变化对氧化铝溶出率和溶出赤泥N/S的影响较小;随着溶液中K~+浓度的升高,铝土矿中K_2O的表观溶出率显著降低,但无法完全阻止K元素在溶出过程中进入溶液。在溶液中K~+浓度≤155.28g/L条件下,K~+取代Na~+进入钠硅渣晶格的难度大,工厂溶液中K~+的平衡浓度预计会远高于当前的水平。应用含钾铝土矿生产的企业必须采取除钾工艺措施才能有效控制生产系统中钾含量的升高。  相似文献   

8.
控制试验溶液中Mn~(2+)浓度18.75g/L、(NH_4)_2SO_4浓度100g/L,研究Mg~(2+)浓度对硫酸锰电解液理化性质的影响。结果表明,随着Mg~(2+)浓度的增加,不同温度梯度下硫酸锰电解液的密度、电导率以及黏度均呈上升趋势,而表面张力逐渐下降。当Mg~(2+)浓度一定时,随着温度的升高,硫酸锰电解液的密度、黏度及表面张力呈下降趋势,而电导率逐渐增加。  相似文献   

9.
甘蔗汁还原软锰矿制备高纯碳酸锰工艺研究   总被引:1,自引:0,他引:1  
采用甘蔗汁作为还原剂,在稀硫酸介质中湿法还原软锰矿制备高纯碳酸锰。当甘蔗汁与软锰矿质量比为1.15时,锰的浸出率在95%以上。用活性炭对硫酸锰滤液进行吸附处理,通过单因素实验确定最佳脱色工艺参数,结果表明:当活性炭与甘蔗汁质量比为0.1,溶液DH值为2,反应时间3h时,硫酸锰粗滤液的脱色率在94%以上;然后加入硫化钡除去溶液的重金属离子,过滤,向滤液中加入二氟化锰使溶液中的钙、镁等离子沉淀除去得高纯硫酸锰溶液,将碳酸氢铵加入硫酸锰溶液中制备出高纯碳酸锰。经检测产品纯度在95%以上。  相似文献   

10.
以粉体电解二氧化锰为吸附剂,对硫酸锰溶液深度除钼工艺进行了试验探讨。考察了硫酸锰溶液的浓度、溶液的DH值、吸附剂的加入量、反应时间及温度等因素对不同锰氧化物吸附除钼的影响。结果表明:在硫酸锰浓度为70-200g/L、Mo 1 mg/L左右、硫酸锰溶液初始pH值为2.0~4.5、除钼反应温度为70~90℃、反应时间为60min和电解二氧化锰加入量大于3.30g/L的优化条件下,除钼后硫酸锰溶液的含钼量低于0.02mg/L。完全达到生产无汞碱性锌锰电池专用电解二氧化锰的要求。  相似文献   

11.
在硫酸体系中,Na~+浓度与SO_4~(2-)浓度呈正相关,Na~+浓度高,SO_4~(2-)浓度也高,在有Na~+存在的情况下加入Ca(OH)_2不能去除SO_4~(2-)。在溶液中引入氯离子将钠盐溶液由原来的硫酸体系转化为氯化体系,则SO_4~(2-)的去除效果较好,SO_4~(2-)浓度高达21.9g/L的含钠溶液,通过转化法SO_4~(2-)浓度可降到1.0 g/L以下。  相似文献   

12.
氧化锰是锰矿石中最主要的一类矿物,也是锰矿石在工业上应用最为广泛的一类矿物。但是目前对锰矿石中氧化锰的研究仅局限于某一矿区的特定矿物,不能涵盖我国大部分矿区的众多氧化锰矿物。实验选择了不同矿区、不同种类的氧化锰矿石,从中挑选出软锰矿、水锰矿、褐锰矿的单矿物,分别加入了盐酸羟胺-盐酸、草酸-硫酸、亚硫酸(H_2SO_3)、硫酸-氢氟酸-氟化钾(H_2SO_4-HF-KF)和偏磷酸(HPO_3)共5种浸取剂,只有盐酸羟胺-盐酸的浸取率均达到了98%以上,适用于实验用的所有单矿物。为进一步确定最佳浸取条件,选择了10min~1.5h浸取时间、5~40g/L盐酸羟胺溶液和HCl(0.2+99.8)~(3+97)的酸度(也就是HCl的体积分数范围为0.2%~3%)分别进行了3种单矿物试验,结果发现在30min~1.5h之间,不低于20g/L盐酸羟胺溶液和不低于HCl(1+99)的酸度(即HCl的体积分数不小于1%)的条件下,3种单矿物的浸出率均达到99.5%以上。考虑到原矿石的复杂情况,最终确定了向氧化锰矿石中加入50mL 20g/L盐酸羟胺-盐酸(1+99),在沸水浴条件下浸取1.0h,使Mn~(3+)和Mn~(4+)还原到Mn~(2+)从而破坏其原本的矿物结构后将锰解析出来,过滤后用电感耦合等离子体原子发射光谱(ICP-AES)测定溶液中锰含量的方法。锰的检出限为0.7μg/g,方法适用于我国大部分矿区的众多氧化锰矿物。按照实验方法测定锰矿石原矿样品,测定结果的相对标准偏差(RSD,n=12)为0.39%和1.1%,对锰矿石原矿样品的单矿物加标回收率在99.7%~102.3%之间。  相似文献   

13.
焙烧氰化法提金尾渣经酸浸后产出大量酸性硫酸铁溶液,因其中含有较高的砷而限制了其高值化利用。采用铁粉预还原—硫化亚铁脱砷对溶液中的砷进行脱除研究。结果表明,溶液中砷的存在形式及分布与溶液体系电位密切相关,铁粉可以有效降低溶液电位,经铁粉预还原后硫酸铁溶液中的砷可用硫化亚铁有效脱除。当铁粉添加量为溶液中铁含量的0.6倍,溶液加入36.6g/L的FeS,搅拌30min,可使溶液中砷含量由0.253g/L降低至4.79mg/L。空气对脱砷过程有不利影响。  相似文献   

14.
研究了以碳酸氢铵为碳化剂从低品位软锰矿矿浆脱硫吸收液中碳化沉淀硫酸锰制备碳酸锰,考察了碳锰比(碳酸氢铵与硫酸锰的物质的量比)、温度、初始pH及加料速度对锰回收率的影响。结果表明:反应过程中,碳锰比对溶液中锰的沉淀率影响较大,碳锰比为2.2时,锰沉淀率达98%以上;反应温度为40℃、pH为6.0条件下,硫酸锰溶液中加入碳酸氢铵,混合10min,反应1h,所得碳酸锰中锰质量分数为43.32%,质量达工业级碳酸锰一等品标准(HG/T 4203—2011)。  相似文献   

15.
采用芬顿法氧化脱除硫酸锰溶液中残余的有机物。通过基于Box-Behnken设计的响应面法对初始pH值、Fe~(2+)离子投加量和H_2O_2/Fe~(2+)摩尔比的工艺参数进行研究并优化,以COD脱除率为响应值。结果表明:Fe~(2+)离子投加量对COD脱除率的影响最显著,H_2O_2/Fe~(2+)摩尔比次之,初始pH值最小;在Fe~(2+)的投加量为29.47 mmol/L,H_2O_2/Fe~(2+)摩尔比为5.00,初始pH值为3.11的条件下,COD脱除率可达74.50%,与响应面模型预测值误差小于2%。证明利用芬顿反应脱除硫酸锰溶液中残余有机物的方法是可行的。  相似文献   

16.
通过腐蚀失重测试、宏观形貌观察、微观形貌分析、自腐蚀电位测定、极化曲线以及交流阻抗图谱测试等试验检测方法,考察了盐酸溶液中铁离子对热轧抛丸后铁素体不锈钢表面氧化层去除过程的影响。结果表明:不锈钢酸洗过程中Fe~(2+)的累积使溶液氧化还原电位降低,同时降低酸洗效率;Fe~(3+)的累积使溶液氧化还原电位提升,同时提升酸洗效率。在3 mol/L盐酸浓度的溶液中,加入0.5 mol/L的Fe~(3+)或Fe~(2+),不锈钢的酸洗失重率由0.22%分别增至1.23%或降至0.14%。随着溶液中Fe~(3+)同Fe~(2+)摩尔浓度比(C_(Fe~(3+))/C_(Fe~(2+)))的增大,不锈钢的酸洗失重率逐渐增大。在盐酸浓度为1.37 mol/L、全铁浓度为1.79 mol/L的溶液体系中,当C_(Fe~(3+))/C_(Fe~(2+))≥2时,不锈钢的酸洗失重率较不含铁离子的溶液体系提高7.2倍以上。在盐酸溶液中,Fe~(3+)通过直接参与阴极反应提升反应速率,Fe~(2+)通过替换不锈钢表面吸附的H~+从而降低反应速率。  相似文献   

17.
《湿法冶金》2021,40(1)
研究了采用一种高效除氯剂以吸附沉淀法从湿法炼锌溶液中去除Cl~-(质量浓度500 mg/L)。结果表明:在除氯剂用量为Cl~-质量浓度10倍、反应时间60 min、反应温度60℃、料液pH=5.0条件下,氯去除率达81.10%,除氯后溶液中Cl~-质量浓度低于200 mg/L,符合要求;适宜条件下,溶液中的Mg~(2+)、F~-和Zn~(2+)质量浓度对除氯影响不大。  相似文献   

18.
以废旧锂电池正极极片粉浸出液为原料,采用铁粉还原法沉淀铜—硫化钠深度除铜—中和水解法除铁铝—氟化钠除镁工艺流程综合回收有价金属。结果表明,铁粉加入系数1.1时,铜能大量沉淀,再次加入5倍理论量的硫化钠后,铜接近完全沉淀。调节溶液pH=4,反应时间2h,铁和铝接近完全沉淀。除铁后的滤液用氟化钠除去镁离子,设定反应温度80℃、氟化钠用量2.5g/L,镁去除率达99%。除杂后溶液中Cu2mg/L、Mg5mg/L,Al、Fe能控制在6mg/L以内,后续可采用共沉淀法制备碳酸盐前躯体。  相似文献   

19.
采用HNO3(1+ 2)溶解样品,氯则全部以Cl形式溶解于溶液中,通过测定溶液中Cl质量浓度,即可计算出碳酸稀土中氯含量。试验探讨了在以硝酸钾和柠檬酸三钠为总离子强度调节缓冲溶液(TISAB)体系中,主要以EDTA溶液络合稀土离子,采用氯离子选择性电极-标准加入法测定碳酸稀土中氯含量的方法。结果表明:溶液中Cl质量浓度在2.0~40.0 mg/L范围内,EDTA溶液和TISAB溶液用量均为10 mL,Cl质量浓度的负对数与相应电极电位(E)呈良好线性关系,线性相关系数为0.999 9;为保证测试结果的准确性,样品和电极响应斜率S值的测定须在同一恒温体系下进行;方法检出限为0.947 mg/L;对于5 mg/L的Cl,大量K+、Na+、NO3不干扰Cl的测定,RE3+、Ca2+、Fe2+、Na+最大允许量分别为10.0、4.0、5.5、23 g/L。按照实验方法测定碳酸镧和混合碳酸稀土中氯,结果的相对标准偏差(RSD,n=5)均小于5%;测定值与氯化银比浊法的测定值基本一致。  相似文献   

20.
研究了采用P507-Cyanex272协萃体系从电解锰合格液中萃取分离锰镁钙,考察了水相pH、有机相皂化率、萃取相比、萃取剂体积分数、萃取温度、混合时间及Cyanex272添加量对锰、镁、钙离子萃取率的影响,并对负载有机相进行洗涤、反萃取分离去除钙镁杂质。结果表明:在水相pH=4.5、有机相皂化率50%、萃取相比Vo/Va=2.5/1、萃取剂体积分数30%、萃取温度35℃、混合时间5 min、Cyanex272占比60%条件下,锰、镁、钙萃取率分别为64.28%、15.77%和16.24%;负载有机相分别用0.03 mol/L稀硫酸溶液和30 g/L硫酸锰溶液进行两段洗涤,再以1 mol/L硫酸反萃取,反萃取液中锰、镁离子质量浓度分别为52.57 g/L和0.27 g/L,反萃取液再经高纯碳酸锰中和—协同萃取—反萃取,可满足电池级硫酸锰生产要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号