共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper we propose a new statistical method for process monitoring that uses independent component analysis (ICA). ICA is a recently developed method in which the goal is to decompose observed data into linear combinations of statistically independent components [1 and 2]. Such a representation has been shown to capture the essential structure of the data in many applications, including signal separation and feature extraction. The basic idea of our approach is to use ICA to extract the essential independent components that drive a process and to combine them with process monitoring techniques. I2, Ie2 and SPE charts are proposed as on-line monitoring charts and contribution plots of these statistical quantities are also considered for fault identification. The proposed monitoring method was applied to fault detection and identification in both a simple multivariate process and the simulation benchmark of the biological wastewater treatment process, which is characterized by a variety of fault sources with non-Gaussian characteristics. The simulation results clearly show the power and advantages of ICA monitoring in comparison to PCA monitoring. 相似文献
2.
Integrating independent component analysis and local outlier factor for plant-wide process monitoring 总被引:2,自引:0,他引:2
We propose a novel process monitoring method integrating independent component analysis (ICA) and local outlier factor (LOF). LOF is a recently developed outlier detection technique which is a density-based outlierness calculation method. In the proposed monitoring scheme, ICA transformation is performed and the control limit of LOF value is obtained based on the normal operating condition (NOC) dataset. Then, at the monitoring phase, the LOF value of current observation is computed at each monitoring time, which determines whether the current process is a fault or not. The comparison experiments are conducted with existing ICA-based monitoring schemes on widely used benchmark processes, a simple multivariate process and the Tennessee Eastman process. The proposed scheme shows the improved accuracy over existing schemes. By adopting LOF, the monitoring statistic is computed regardless of data distribution. Therefore, the proposed scheme integrating ICA and LOF is more suitable for real industry where the monitoring variables are the mixture of Gaussian and non-Gaussian variables, whereas existing ICA-based schemes assume only non-Gaussian distribution. 相似文献
3.
传统的多元统计过程控制(MSPC)的故障诊断方法要求观测变量数据服从高斯分布,然而实际化工流程中的仪表数据中难以满足这一要求。针对这一问题,提出在仪表数据中提取分离出非高斯信息和高斯信息,并分别利用独立元分析法和主元分析法建立不同的故障诊断模型。在检测到发生故障后,通过改进的贡献度算法定位出发生故障的仪表。通过对Tennessee Eastman(TE)过程数据进行仿真研究,验证了ICA-PCA故障诊断法在化工流程仪表不同故障诊断中的有效性。 相似文献
4.
Robust multi-scale principal components analysis with applications to process monitoring 总被引:1,自引:0,他引:1
Robust multi-scale principal component analysis (RMSPCA) improves multi-scale principal components analysis (MSPCA) techniques by incorporating the uncertainty of signal noise distributions and eliminating/down-weighting the effects of abnormal data in the training set. The novelty of the approach is to integrate MSPCA with the robustness to the typical normality assumption of noisy data. By using an M-estimator based on the generalized T distribution, RMSPCA adaptively transforms the data in the score space at each scale in order to eliminate/down-weight the effects of the outliers in the original data. The robust estimation of the covariance or correlation matrix at each scale is obtained by the proposed approach so that accurate MSPCA models can be obtained for process monitoring purposes. The performance of the proposed approach in process fault detection is illustrated and compared with that of the conventional MSPCA approach through a pilot-scale setting. 相似文献
5.
Detecting and isolating multiple plant-wide oscillations via spectral independent component analysis 总被引:4,自引:0,他引:4
Disturbances that propagate throughout a plant can have an impact on product quality and running costs. There is thus a motivation for the automated detection of plant-wide disturbances and for the isolation of the sources. A new application of independent component analysis (ICA), multi-resolution spectral ICA, is proposed to detect and isolate the sources of multiple oscillations in a chemical process. Its key feature is that it extracts dominant spectrum-like independent components each of which has a narrow-band peak that captures the behaviour of one of the oscillation sources. Additionally, a significance index is presented that links the sources to specific plant measurements in order to facilitate the isolation of the sources of the oscillations. A case study is presented that demonstrates the ability of spectral ICA to detect and isolate multiple dominant oscillations in different frequency ranges in a large data set from an industrial chemical process. 相似文献
6.
This study aims to develop an intelligent algorithm by integrating the independent component analysis (ICA) and support vector machine (SVM) for monitoring multivariate processes. For developing a successful SVM-based fault detector, the first step is feature extraction. In real industrial processes, process variables are rarely Gaussian distributed. Thus, this study proposes the application of ICA to extract the hidden information of a non-Gaussian process before conducting SVM. The proposed fault detector will be implemented via two simulated processes and a case study of the Tennessee Eastman process. Results demonstrate that the proposed method possesses superior fault detection when compared to conventional monitoring methods, including PCA, ICA, modified ICA, ICA–PCA and PCA–SVM. 相似文献
7.
A comprehensive monitoring framework is proposed for multimode processes in which mode clustering and mode unfolding are integrated within an adaptive strategy. To start, an aggregated k-means algorithm produces an optimal ensemble clustering solution for a multimode process dataset. Next, a mode unfolding (MU) scheme enables the development of a single principal component analysis (PCA) model for processes operating under multiple desired steady-states (modes). Finally, adaptive strategies for online mode identification and model updating are presented to address the challenges in fault detection in the presence of multiple operating modes. The validity and usefulness of the adaptive MU-PCA based monitoring framework is demonstrated through a study of the Tennessee Eastman benchmark process. 相似文献
8.
针对fM RI数据信噪比低、数据量大的特点,将Pearson分布族应用于独立成分分析算法中,提出基于Pearson系统的独立成分分析算法。增加非线性函数生成器,改进调整步长的方法,能根据观测数据自适应地估计非线性函数。改进的算法与原ICA算法相比,运行速度时间缩短,在fM RI信号分离中取得了较好的效果。将该算法应用于颜色和形状的特征捆绑认知中,得出参与捆绑认知的各大脑区域的主要作用,为建立视觉特征捆绑的认知模型提供理论基础。 相似文献
9.
《Expert systems with applications》2014,41(2):744-751
Hidden Markov models (HMMs) perform parameter estimation based on the forward–backward (FB) procedure and the Baum–Welch (BW) algorithm. The two algorithms together may increase the computational complexity and the difficulty to understand the algorithm structure of HMMs clearly. In this study, an increasing mapping based hidden Markov model (IMHMM) is proposed. Between the observation sequence and possible state sequence an increasing mapping is established. The re-estimation formulas for the model parameters are derived straightforwardly based on these mappings instead of FB variables. The IMHMM has simpler algorithm structure and lower storage requirement than the HMM. Based on IMHMM, an expandable process monitoring and fault diagnosis framework for large-scale dynamical process is developed. To characterize the dynamic process, a novel index considering serial correlation is used to evaluate process state. The presented methodology is carried out in Tennessee Eastman process (TEP). The results show improvement over HMM in terms of memory complexity and training time of the model. Also, the power of IMHMM can be observed compared with principal component analysis (PCA) based methods. 相似文献
10.
Reconstruction-based contribution for process monitoring 总被引:2,自引:0,他引:2
Carlos F. Alcala Author Vitae Author Vitae 《Automatica》2009,45(7):1593-104
This paper presents a new method to perform fault diagnosis for data-correlation based process monitoring. As an alternative to the traditional contribution plot method, a reconstruction-based contribution for fault diagnosis is proposed based on monitored indices, SPE, T2 and a combined index φ. Analysis of the diagnosability of the traditional contributions and the reconstruction-based contributions is performed. The lack of diagnosability of traditional contributions is analyzed for the case of single sensor faults with large fault magnitudes, whereas for the same case the proposed reconstruction-based contributions guarantee correct diagnosis. Monte Carlo simulation results are provided for the case of modest fault magnitudes by randomly assigning fault sensors and fault magnitudes. 相似文献
11.
LIU ZhiYong & QIAO Hong Institute of Automation Chinese Academy of Sciences Beijing China 《中国科学:信息科学(英文版)》2011,(4):849-860
Skewness has received much less attention than kurtosis in the independent component analysis (ICA).In particular,the skewness seems to become a useless statistics after the kurtosis related one-bit-matching theorem was proven.However,as the non-Gaussianity of one signal comes mainly from skewness,it is intuitively understandable that its recovery should not rely on kurtosis.In this paper we discuss the skewness based ICA,and show that any probability density function (pdf) with non-zero skewness can be emp... 相似文献
12.
为克服传统过程监控方法需假设过程特征信号服从多元正态分布的缺陷,本文提出了一种将独立成分分析(ICA)与支持向量机结合的故障诊断方法。通过建立独立成分模型确定相应的统计量界限,筛选出需进一步检测的故障数据,再由支持向量机进行故障识别。将该方法用于化工聚合反应的过程监控与故障诊断中,仿真结果表明,这种混合故障诊断方法通过适当地调节统计量控制界限,不仅能够正确识别故障,而且能够纠正由误检数据引起的误报,提高故障诊断的准确率。 相似文献
13.
偏度在独立元分析模型中的作用分析及算法设计 总被引:1,自引:0,他引:1
相对于峭度(kurtosis),偏度(skewness)历来在独立元分析(ICA)的研究中就没有得到充分重视.尤其是当关于峭度符号的一比特匹配定理在理论上被证明了以后,偏度似乎更是变成了ICA模型中的一个无用统计量.但当信号的峭度很小或者其非Gauss性主要源自于偏度时,仅仅利用峭度信息是不足够的.本文目的就在于分析和讨论在此种情况下独立元分析如何利用偏度信息.首先从理论上分析了偏度在ICA模型中的作用,结果表明在偏度上并不存在与峭度类似的一比特匹配定理,也就是说,算法中模型密度函数的选择无需考虑其偏度与源信号偏度的符号匹配问题.在此基础上,本文进一步提出了一套灵活的模型密度函数设计方法,并提出了一个算法实例,它可以适用于具有任意偏度和峭度组合的信号. 相似文献
14.
针对化工过程监测数据复杂、非线性等特点,本文将一种新的降维算法一核熵成分分析算法应用到化工过程监控。与其他的多元统计分析方法相比,核熵成分分析算法可以保证数据降维过程中的信息损失最小从而建立更加可靠的统计模型,进而提高故障检测的检出率。与核主成分分析相似,核熵成分分析也是将数据映射到一个高维空间,在高维空间中进行主元分析,不同之处是KECA在选取主元时采用了信息保有量较大的主元,使得数据在降维后的信息损失量更少。本文使用某石化企业的润滑油重质过程的数据测试算法监控效果,核熵成分分析算法的故障检出率为98.2%,比核主成分分析算法(69.706%)要高。实验结果显示,核熵成分分析算法的化工过程监控效果优于核主成分分析算法。 相似文献
15.
A robust strategy for real-time process monitoring 总被引:1,自引:0,他引:1
An operator support system (OSS) is proposed to reliably retain salient information in a high dimensional and correlated database, to uncover linear and nonlinear correlations among variables, to reconstruct failed/unavailable sensors, and to assess process-operating performance in the presence of noise and outliers. The proposed strategy carries out the task in three steps. In the first step, a robust tandem filter is used to suppress noise and reject any outlying observations. Next, an orthogonal nonlinear principal component analysis network is utilized to optimally retain a parsimonious representation of the system. In the final step, the process status is checked against the normal operating region defined by kernel density estimation, and failed/unavailable sensors are reconstructed via constrained optimization and the trained network. The strategy is demonstrated in real-time using a pilot-scale distillation column. 相似文献
16.
独立元分析是新引入化学计量学中的用于组分辨识的多元统计分析方法,奇异值分解是独立元分析的必要步骤。奇异值分解得到的基向量和独立元向量分别构成向量空间,当向量数目与实际体系数目一致时,两个向量空间是一致的,可以相互表述,利用幂等矩阵性质,可以显示出空间的差异。将奇异值分析结果与计算出的独立分量进行子空间差异对比,可以实现黑色体系组分数目的判断;经模拟和光谱分析数据证实,方法是准确、便捷的。 相似文献
17.
Dynamic process fault monitoring based on neural network and PCA 总被引:2,自引:0,他引:2
A newly developed method, NNPCA, integrates two data driven techniques, neural network (NN) and principal component analysis (PCA), for process monitoring. NN is used to summarize the operating process information into a nonlinear dynamic mathematical model. Chemical dynamic processes are so complex that they are presently ahead of theoretical methods from a fundamental physical standpoint. NN functions as the nonlinear dynamic operator to remove processes' nonlinear and dynamic characteristics. PCA is employed to generate simple monitoring charts based on the multivariable residuals derived from the difference between the process measurements and the neural network prediction. It can evaluate the current performance of the process. Examples from the recent monitoring practice in the industry and the large-scale system in the Tennessee Eastman process problem are presented to help the reader delve into the matter. 相似文献
18.
Jian Cheng Author Vitae Qingshan Liu Author Vitae Yen-Wei Chen Author Vitae 《Pattern recognition》2006,39(1):81-88
It is well known that the applicability of independent component analysis (ICA) to high-dimensional pattern recognition tasks such as face recognition often suffers from two problems. One is the small sample size problem. The other is the choice of basis functions (or independent components). Both problems make ICA classifier unstable and biased. In this paper, we propose an enhanced ICA algorithm by ensemble learning approach, named as random independent subspace (RIS), to deal with the two problems. Firstly, we use the random resampling technique to generate some low dimensional feature subspaces, and one classifier is constructed in each feature subspace. Then these classifiers are combined into an ensemble classifier using a final decision rule. Extensive experimentations performed on the FERET database suggest that the proposed method can improve the performance of ICA classifier. 相似文献
19.
20.
针对化工过程数据的多尺度性和非线性特性,提出了一种多尺度核主元分析方法(MSKPCA)监控过程的运行状态。使用小波变换在不同尺度下分解测量信号.然后借助于核函数对分解后的数据进行非线性变换,在变换后的线性空间中用主元分析(PCA)提取过程数据的主要特征,构造监控统计量T2和Q来检测故障。在此基础上,提出了一种贡献图方法.计算过程变量对故障的贡献量,用于故障变量的分离。在TE过程上的监控结果表明,MSKPCA可以比PCA和动态PCA更迅速地检测到过程故障,贡献图方法能够正确地分离故障变量。 相似文献