首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper develops the Somigliana type boundary integral equations for fracture of anisotropic thermoelastic solids using the Stroh formalism and the theory of analytic functions. In the absence of body forces and internal heat sources, obtained integral equations contain only curvilinear integrals over the solid’s boundary and crack faces. Thus, the volume integration is eliminated and also there is no need to evaluate integrals over the contours in the mapped temperature domain as it was done before. In addition to finite solids, the case of an infinite anisotropic medium with a remote thermal load is also studied. The dual boundary element method for fracture of anisotropic thermoelastic solids is developed based on the obtained boundary integral equations. Presented numerical examples show the validity and efficiency of the obtained equations in the analysis of both finite and infinite solids with cracks.  相似文献   

2.
This paper presents a boundary element analysis of linear elastic fracture mechanics in three‐dimensional cracks of anisotropic solids. The method is a single‐domain based, thus it can model the solids with multiple interacting cracks or damage. In addition, the method can apply the fracture analysis in both bounded and unbounded anisotropic media and the stress intensity factors (SIFs) can be deduced directly from the boundary element solutions. The present boundary element formulation is based on a pair of boundary integral equations, namely, the displacement and traction boundary integral equations. While the former is collocated exclusively on the uncracked boundary, the latter is discretized only on one side of the crack surface. The displacement and/or traction are used as unknown variables on the uncracked boundary and the relative crack opening displacement (COD) (i.e. displacement discontinuity, or dislocation) is treated as a unknown quantity on the crack surface. This formulation possesses the advantages of both the traditional displacement boundary element method (BEM) and the displacement discontinuity (or dislocation) method, and thus eliminates the deficiency associated with the BEMs in modelling fracture behaviour of the solids. Special crack‐front elements are introduced to capture the crack‐tip behaviour. Numerical examples of stress intensity factors (SIFs) calculation are given for transversely isotropic orthotropic and anisotropic solids. For a penny‐shaped or a square‐shaped crack located in the plane of isotropy, the SIFs obtained with the present formulation are in very good agreement with existing closed‐form solutions and numerical results. For the crack not aligned with the plane of isotropy or in an anisotropic solid under remote pure tension, mixed mode fracture behavior occurs due to the material anisotropy and SIFs strongly depend on material anisotropy. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

3.
The paper presents a rigorous and straightforward approach for obtaining the 2D boundary integral equations for a thermoelectroelastic half-space containing holes, cracks and thin foreign inclusions. It starts from the Cauchy integral formula and Stroh orthogonality relations to obtain the integral formulae for the Stroh complex functions, which are piecewise-analytic in the complex half-plane with holes and opened mathematical cuts. Further application of the Stroh formalism allows derivation of the Somigliana type integral formulae and boundary integral equations for a thermoelectroelastic half-space. The kernels of these equations correspond to the fundamental solutions of heat transfer, electroelasticity and thermoelectroelasticity for a half-space. It is shown that the difference between the obtained fundamental solution of thermoelectroelasticity and those presented in literature is due to the fact, that present solution additionally accounts for extended displacement and stress continuity conditions, thus, it is physically correct. Obtained integral equations are introduced into the boundary element approach. Numerical examples validate derived boundary integral equations, show their efficiency and accuracy.  相似文献   

4.
A time-domain boundary element method (TDBEM) for transient dynamic analysis of two-dimensional (2D), homogeneous, anisotropic and linear piezoelectric cracked solids is presented in this paper. The present analysis uses a combination of the strongly singular displacement boundary integral equations (BIEs) and the hypersingular traction boundary integral equations. The spatial discretization is performed by a Galerkin-method, while a collocation method is implemented for the temporal discretization. Both temporal and spatial integrations are carried out analytically. In this way, only the line integrals over a unit circle arising in the time-domain fundamental solutions are computed numerically by standard Gaussian quadrature. An explicit time-stepping scheme is developed to compute the unknown boundary data including the generalized crack-opening-displacements (CODs) numerically. Special crack-tip elements are adopted to ensure a direct and an accurate computation of the dynamic field intensity factors (IFs) from the CODs. Several numerical examples involving stationary cracks in both infinite and finite solids under impact loading are presented to show the accuracy and the efficiency of the developed hypersingular time-domain BEM.  相似文献   

5.
Abstract

A novel integral equation method is developed in this paper for the analysis of two‐dimensional general anisotropic elastic bodies with cracks. In contrast to the conventional boundary integral methods based on reciprocal work theorem, the present method is derived from Stroh's formalism for anisotropic elasticity in conjunction with Cauchy's integral formula. The proposed boundary integral equations contain boundary displacement gradients and tractions on the non‐crack boundary and the dislocations on the crack lines. In cases where only the crack faces are subjected to tractions, the integrals on the non‐crack boundary are non‐singular. The boundary integral equations can be solved using Gaussian‐type integration formulas directly without dividing the boundary into discrete elements. Numerical examples of stress intensity factors are given to illustrate the effectiveness and accuracy of the present method.  相似文献   

6.
This paper develops integral equations and boundary element method for determination of 2D electro-elastic state of solids containing cracks, thin voids and inclusions. It proves that stress and electric displacement field near the tip of thin inhomogeneity possesses square root singularity. Thus, for determination of electromechanical fields near thin defects new special base functions are introduced. The interpolation quadratures along with the polynomial transformations are adopted for efficient numerical evaluation of singular and hypersingular integrals. Presented numerical examples show high efficiency and accuracy of the proposed approach.  相似文献   

7.
A boundary integral formulation for the analysis of cracks in thin Kirchhoff plates is presented. The numerical solution of the relevant equations is addressed following three different approaches: two single integration methodologies initially introduced for 2D elastic solids are here reformulated, compared with a third (Galerkin) double integration approach and extended to the analysis of cracks in thin plates. exploiting an analogy with 2D elastic fracture mechanics. Comparative numerical testing, in terms of stress intensity factors, is performed with reference to straight and curved cracks in unbounded domains. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

8.
This paper presents a novel approach for obtaining boundary integral equations of 2D anisotropic magnetoelectroelasticity. This approach is based on the holomorphy theorems and the Stroh formalism and allows developing of the integral equations for the aperiodic, singly and doubly periodic problems of magnetoelectroelasticity. Obtained equations contain the unknown discontinuities of displacement, electric and magnetic potentials and also traction, electric displacement and magnetic induction that allow adopting the existing boundary element procedures for their solution. Analytical solutions for systems of collinear permeable or impermeable cracks are obtained. Numerical boundary element solutions are obtained for the singly and doubly periodic sets of permeable and impermeable cracks in the magnetoelectroelastic medium and a half-plane. Comparison with analytical solutions and other available results validate the present formulations and numerical computation.  相似文献   

9.
Transient elastodynamic analysis of two-dimensional, piecewise homogeneous, anisotropic and linear elastic solids containing interior and interface cracks is presented in this paper. To solve the initial boundary value problem, a spatial symmetric time-domain boundary element method is developed. Stationary cracks subjected to impact loading conditions are considered. Elastodynamic fundamental solutions for homogenous, anisotropic and linear elastic solids are implemented. The piecewise homogeneous, anisotropic and linear elastic solids are modeled by the multi-domain technique. The spatial discretization is performed by a symmetric Galerkin-method, while a collocation method is utilized for the temporal discretization. An explicit time-stepping scheme is obtained for computing the unknown boundary data. Numerical examples are presented and discussed to show the effects of the interface cracks, the material anisotropy, the material combination and the dynamic loading on the dynamic stress intensity factors.  相似文献   

10.
With the aid of the elastic–viscoelastic correspondence principle, the boundary element developed for the linear anisotropic elastic solids can be applied directly to the linear anisotropic viscoelastic solids in the Laplace domain. Green's functions for the problems of two-dimensional linear anisotropic elastic solids containing holes, cracks, inclusions, or interfaces have been obtained analytically using Stroh's complex variable formalism. Through the use of these Green's functions and the correspondence principle, special boundary elements in the Laplace domain for viscoelastic solids containing holes, cracks, inclusions, or interfaces are developed in this paper. Subregion technique is employed when multiple holes, cracks, inclusions, and interfaces exist simultaneously. After obtaining the physical responses in Laplace domain, their associated values in time domain are calculated by the numerical inversion of Laplace transform. The main feature of this proposed boundary element is that no meshes are needed along the boundary of holes, cracks, inclusions and interfaces whose boundary conditions are satisfied exactly. To show this special feature by comparison with the other numerical methods, several examples are solved for the linear isotropic viscoelastic materials under plane strain condition. The results show that the present BEM is really more efficient and accurate for the problems of viscoelastic solids containing interfaces, holes, cracks, and/or inclusions.  相似文献   

11.
A hypersingular time‐domain boundary element method (BEM) for transient elastodynamic crack analysis in two‐dimensional (2D), homogeneous, anisotropic, and linear elastic solids is presented in this paper. Stationary cracks in both infinite and finite anisotropic solids under impact loading are investigated. On the external boundary of the cracked solid the classical displacement boundary integral equations (BIEs) are used, while the hypersingular traction BIEs are applied to the crack‐faces. The temporal discretization is performed by a collocation method, while a Galerkin method is implemented for the spatial discretization. Both temporal and spatial integrations are carried out analytically. Special analytical techniques are developed to directly compute strongly singular and hypersingular integrals. Only the line integrals over an unit circle arising in the elastodynamic fundamental solutions need to be computed numerically by standard Gaussian quadrature. An explicit time‐stepping scheme is obtained to compute the unknown boundary data including the crack‐opening‐displacements (CODs). Special crack‐tip elements are adopted to ensure a direct and an accurate computation of the elastodynamic stress intensity factors from the CODs. Several numerical examples are given to show the accuracy and the efficiency of the present hypersingular time‐domain BEM. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

12.
A two-dimensional (2D) time-domain boundary element method (BEM) is presented in this paper for transient analysis of elastic wave scattering by a crack in homogeneous, anisotropic and linearly elastic solids. A traction boundary integral equation formulation is applied to solve the arising initial-boundary value problem. A numerical solution procedure is developed to solve the time-domain boundary integral equations. A collocation method is used for the temporal discretization, while a Galerkin-method is adopted for the spatial discretization of the boundary integral equations. Since the hypersingular boundary integral equations are first regularized to weakly singular ones, no special integration technique is needed in the present method. Special attention of the analysis is devoted to the computation of the scattered wave fields. Numerical examples are given to show the accuracy and the reliability of the present time-domain BEM. The effects of the material anisotropy on the transient wave scattering characteristics are investigated.  相似文献   

13.
Several transient wave propagation problems in anisotropic media and isotropic media with cracks are numerically analyzed by using a new numerical algorithm based on meshless local Petrov–Galerking (MLPG) method. In this algorithm, a novel modified Moving Least Squares (MLS) approximation is introduced to simplify the treatment of essential boundary conditions. By using a variant type of MLPG1 methods, the stabilized scheme of the discretized elasto-dynamic equations is obtained. Explicit central difference method with lumped mass matrix is used to solve the coupled ODEs to increase the efficiency of present algorithm. Visibility criterion is used to present the cracks, and the path-independent dynamic J′ integral is adopted to evaluate the dynamic stress intensity factors. The availability and accuracy of the present algorithm in solving dynamic problems in isotropic or anisotropic media with cracks are tested through the comparison with the results obtained by the LS-DYNA and the method of characteristic. Finally, the transient stress wave interacting with a slanted crack under an impact loading is investigated in detail, in which the ability of extracting the different stress-wave components in a complex acoustic field is also proved.  相似文献   

14.
The meshless local Petrov–Galerkin method is used to analyze transient heat conduction in 3-D axisymmetric solids with continuously inhomogeneous and anisotropic material properties. A 3-D axisymmetric body is created by rotation of a cross section around an axis of symmetry. Axial symmetry of geometry and boundary conditions reduces the original 3-D boundary value problem into a 2-D problem. The cross section is covered by small circular subdomains surrounding nodes randomly spread over the analyzed domain. A unit step function is chosen as test function, in order to derive local integral equations on the boundaries of the chosen subdomains, called local boundary integral equations. These integral formulations are either based on the Laplace transform technique or the time difference approach. The local integral equations are nonsingular and take a very simple form, despite of inhomogeneous and anisotropic material behavior across the analyzed structure. Spatial variation of the temperature and heat flux (or of their Laplace transforms) at discrete time instants are approximated on the local boundary and in the interior of the subdomain by means of the moving least-squares method. The Stehfest algorithm is applied for the numerical Laplace inversion, in order to retrieve the time-dependent solutions.  相似文献   

15.
A two-dimensional boundary element method for the analysis of a magnetoelectroelastic medium containing doubly periodic sets of cracks or thin inclusions is developed in this paper. The integral equations and closed-form expressions for corresponding kernels are obtained. Based on the quasi-periodicity of extended displacement and stress function, the integral representations for average stress, strain, electric displacement, magnetic induction etc. are developed. The algorithm of effective properties determination is given. The numerical examples prove the efficiency and high accuracy of the proposed approach in determination of stress, electric displacement and magnetic induction intensity factors and effective properties of the material containing doubly periodic arrays of cracks or thin inclusions.  相似文献   

16.
A time-domain boundary element method (BEM) for transient dynamic crack analysis in two-dimensional, homogeneous, anisotropic and linear elastic solids is presented in this paper. Strongly singular displacement boundary integral equations (DBIEs) are applied on the external boundary of the cracked body while hypersingular traction boundary integral equations (TBIEs) are used on the crack-faces. The present time-domain method uses the quadrature formula of Lubich for approximating the convolution integrals and a collocation method for the spatial discretization of the time-domain boundary integral equations. Strongly singular and hypersingular integrals are dealt with by a regularization technique based on a suitable variable change. Discontinuous quadratic quarter-point elements are implemented at the crack-tips to capture the local square-root-behavior of the crack-opening-displacements properly. Numerical examples for computing the dynamic stress intensity factors are presented and discussed to demonstrate the accuracy and the efficiency of the present method.  相似文献   

17.
This paper presents a boundary element analysis of elliptical cracks in two joined transversely isotropic solids. The boundary element method is developed by incorporating the fundamental singular solution for a concentrated point load in a transversely isotropic bi-material solid of infinite space into the conventional displacement boundary integral equations. The multi-region method is used to analyze the crack problems. The traction-singular elements are employed to capture the singularity around the crack front. The values of stress intensity factors (SIFs) are obtained by using crack opening displacements. The results of the proposed method compare well with the existing exact solutions for an elliptical crack parallel to the isotropic plane of a transversely isotropic solid of infinite extent. Elliptical cracks perpendicular to the interface of transversely isotropic bi-material solids of either infinite extent or occupying a cubic region are further examined in detail. The crack surfaces are subject to the uniform normal tractions. The stress intensity factor values of the elliptical cracks of the two types are analyzed and compared. Numerical results have shown that the stress intensity factors are strongly affected by the anisotropy and the combination of the two joined solids.  相似文献   

18.
A new formulation of the boundary element method (BEM) is proposed in this paper to calculate stress intensity factors for cracked 2-D anisotropic materials. The most outstanding feature of this new approach is that the displacement and traction integral equations are collocated on the outside boundary of the problem (no-crack boundary) only and on one side of the crack surfaces only, respectively. Since the new BEM formulation uses displacements or tractions as unknowns on the outside boundary and displacement differences as unknowns on the crack surfaces, the formulation combines the best attributes of the traditional displacement BEM as well as the displacement discontinuity method (DDM). Compared with the recently proposed dual BEM, the present approach doesn't require dua elements and nodes on the crack surfaces, and further, it can be used for anisotropic media with cracks of any geometric shapes. Numerical examples of calculation of stress intensity factors were conducted, and excellent agreement with previously published results was obtained. The authors believe that the new BEM formulation presented in this paper will provide an alternative and yet efficient numerical technique for the study of cracked 2-D anisotropic media, and for the simulation of quasi-static crack propagation.  相似文献   

19.
This paper presents a new robust boundary element method, based on a source point isolation technique, for solving general anisotropic potential and elastic problems with varying coefficients. Different types of fundamental solutions can be used to derive the basic integral equations for specific anisotropic problems, although fundamental solutions corresponding to isotropic problems are recommended and adopted in the paper. The use of isotropic fundamental solutions for anisotropic and/or varying material property problems results in domain integrals in the basic integral equations. The radial integration method is employed to transform the domain integrals into boundary integrals, resulting in a pure boundary element analysis algorithm that does not need any internal cells. Numerical examples for 2D and 3D potential and elastic problems are given to demonstrate the correctness and robustness of the proposed method.  相似文献   

20.
A numerical procedure is proposed to compute the T-stress for two-dimensional cracks in general anisotropic elastic media. T-stress is determined from the sum of crack-face displacements which are computed via an integral equation of the boundary data. To smooth out the data in order to perform accurately numerical differentiation, the sum of crack-face displacement is established in a weak-form integral equation in which the integration domain is simply the crack-tip element. This weak-form integral equation is then solved numerically using standard Galerkin approximation to obtain the nodal values of the sum of crack-face displacements. The procedure is incorporated in a weakly-singular symmetric Galerkin boundary element method in which all integral equations for the traction and displacement on the boundary of the domain and on the crack faces include (at most) weakly-singular kernels. To examine the accuracy and efficiency of the developed method, various numerical examples for cracks in infinite and finite domains are treated. It is shown that highly accurate results are obtained using relatively coarse meshes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号