首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Investigated was the effect of Si substitution for SiC on SHS in the Ti–Si–C system. Starting powders were intermixed to obtain 3Ti–SiC–C and 3Ti–Si–2C green mixtures and then green compacts by uniaxial pressing. The influence of heating rate, reactor temperature, and replacement of SiC by Si was studied by XRD, SEM, and TEM. In combustion products obtained in optimized conditions, Ti3SiC2 was found to be predominant. In comparison with conventional methods, our products obtained in a one-step low-temperature process contained minimal amounts of undesired impurities and required no finishing processes such as chemical purification.  相似文献   

3.
The goal of this work is to investigate the combustion mechanisms of reactions in the Mo–Si–B system and to obtain ceramic materials using the SHS method. It is concluded that the following processes are defined by the SHS for Si-rich Mo–Si–B compositions: silicon melting, its spreading over the surfaces of the solid Mo and B particles, followed by B dissolution in the melt, and formation of intermediate Mo3Si-phase film. The subsequent diffusion of silicon into molybdenum results in the formation of MoSi2 grains and molybdenum boride phase forms due to the diffusion of molybdenum into B-rich melt. The formation of MoB phase for B-rich compositions may occur via gas-phase mass transfer of MoO3 gaseous species to boron particles. The stages of chemical interaction in the combustion wave are also investigated. The obtained results indicate the possibility of both parallel and consecutive reactions to form molybdenum silicide and molybdenum boride phases. Thus the progression of combustion process may occur through the merging reaction fronts regime and splitting reaction fronts regime. Molybdenum silicide formation leads the combustion wave propagation during the splitting regime, while the molybdenum boride phase appears later. Finally, targets for magnetron sputtering of promising multi-phase Mo–Si–B coatings are synthesised by forced SHS compaction method.  相似文献   

4.
《Chemical engineering science》2004,59(22-23):5121-5128
A novel mathematical model to simulate SHS processes is proposed. Based on the so-called enthalpy approach to properly account for phase transitions, the model describes microstructural evolution using suitable population balances. For the case of the synthesis of TiC from pure Ti and C, the model quantitatively interprets that reactants are heated up to the Ti melting point. Once Ti melting occurs, the melt is redistributed within the porous system, thus increasing the contact area between reactants and favoring graphite dissolution. TiC grains are then modelled as nucleating in the melt and then growing until the final microstructure is reached. Model reliability is tested by comparison with experimental data.  相似文献   

5.
Zinc oxide (ZnO), zirconium oxide (ZrO2) and their coupled oxides in the molar ratio 1:1, 2:1 and 1:2 (labeled as ZnZr, Zn2Zr, and ZnZr2 respectively) were successfully prepared by a microwave assisted urea–nitrate combustion synthesis. The structure and morphology of the pure ZnO, ZrO2 and coupled ZnZr, Zn2Zr, and ZnZr2 were characterized by powder X-ray diffraction (XRD), diffuse reflectance spectroscopy (DRS), photoluminescence spectroscopy (PL), high resolution scanning electron microscopy (HRSEM), energy dispersive X-ray spectrometry (EDX) and Brunauer–Emmett–Teller (BET) methods. The results of the photocatalytic degradation of 2,4-dichlorophenol (2,4-DCP) in aqueous solution indicated that the coupled metal oxide, Zn2Zr is more effective towards the degradation of 2,4-DCP when compared to ZnO, ZrO2, ZnZr and ZnZr2.  相似文献   

6.
A dielectric bulk glass-ceramic of the La2O3–TiO2–SiO2–B2O3 system is developed which is able to fulfill the requirements for dielectric loading-based mobile communication technologies. It is shown that the given dielectric requirements can be fulfilled by glass-ceramic materials without being dependent on ceramic processing techniques. The material exhibited permittivity values of 20 < ɛr < 30, quality factor 2000 GHz < Qf < 10,000 GHz and a temperature coefficient of resonance frequency −100 < τf < +180 ppm/K. A zero τf material with a Qf value of 9500 GHz and ɛr = 21.4 could be achieved at a ceramming temperature Tcer = 870 °C. The material is aimed to provide an alternative to existing, commercially used sintered ceramic materials. Further focus is laid on the investigation of the dominant dielectric loss mechanisms in the GHz frequency range and how they are correlated with the microstructure.  相似文献   

7.
The behavior of melts and the phase composition of crystallization products of six compositions in the uranium oxide-zirconium oxide-iron oxide system in air have been investigated. It has been revealed that crystallized samples containing 20–50 wt % uranium oxide and 25–80 wt % iron oxide (the rest is zirconium oxide) consist of five crystalline phases and involve two types of eutectic structures. The possible factors responsible for this phenomenon have been considered.  相似文献   

8.
A novel liquid–solid circulating fluidized bed (LSCFB) was modelled for protein recovery from the feed broth. A typical LSCFB system consists of downer and riser, integrating two different operations simultaneously. A general purpose, extensible, and dynamic model was written based on the tanks-in-series framework. The model allowed adjusting the degree of backmixing in each phase for both columns. The model was validated with previously published data on extraction of bovine serum albumin (BSA) as model protein. Detailed dynamic analysis was performed on the protein recovery operation. The interaction between the riser and downer were captured. Parametric studies on protein recovery in LSCFB system were carried out using the validated model to better understand the system behaviour. Simulation results have shown that both production rate and overall recovery increased with solids circulation rate, superficial liquid velocity in the downer and riser, and feed solution concentration. The model was flexible and could use various forms of ion exchange kinetics and could simulate different hydrodynamic behaviours. It was useful to gain insight into protein recovery processes. The general nature of the model made it useful to study other protein recovery operations for plant and animal proteins. It could also be useful for further multi-objective optimization studies to optimize the LSCFB system.  相似文献   

9.
《Ceramics International》2021,47(23):32545-32553
Wetting and interfacial behavior of molten Al-(10, 20, 30, 40) at.%Ti alloys on C-terminated 4H–SiC at 1500 and 1550 °C were investigated experimentally, and theoretical bonding strength, structure stability and electronic structure of interfacial reaction products/C-terminated 4H–SiC interfaces were evaluated by first-principle calculations. The wetting experiments show that the Al–Ti/SiC systems present excellent wettability with contact angle of less than 15° except the Al–40Ti/SiC system performed at 1500 °C × 30 min. The SEM-EDS and TEM analyses demonstrate that the reaction products are mainly composed of Al4C3, TiC, Ti3SiC2, Ti5Si3CX and τ phase, and their formation and evolution can be mainly affected by the Ti concentration in the Al–Ti alloys and wetting temperature. Moreover, the calculated results show that the SiC/C-terminated TiC interface presents the highest work of separation and its electronic property reveals that the localization of electrons and formation of covalent bond between interfacial C atoms lead to the excellent bonding strength of SiC/TiC interface.  相似文献   

10.
Adding SiC directly to MgO–C refractories possesses the disadvantages of low dispersion and interfacial bonding strength. Herein, the in situ synthesized SiC was introduced into the MgO–SiC–C refractories to maintain the original excellent performance of MgO–C refractories and reduce the carbon dissolution in molten steel. With the increase of Si and C content in raw materials, the morphology of SiC changed from whisker to network, whose growth mechanism was vapor–solid and vapor–liquid–solid. The network structure and uniform distribution of SiC improved the thermal shock resistance of MgO–SiC–C refractories. According to the analysis of molecular dynamics simulation by Materials Studio software, SiC strengthened the relationship between periclase and graphite to enhance the structure of the compound.  相似文献   

11.
Gaseous plasma pretreatments and surface derivatization using silane coupling agents (SCA) have been used to enhance the adhesive bonding of an epoxy to SiC-coated Si wafers (SiC/Si). The surface modification approaches included 1) an SCA treatment using 3-aminopropyltriethoxysilane (APS) or 3-glycidoxypropyltrimethoxysilane (GPS) and 2) an oxygen plasma pretreatment followed by a silane treatment. Durability was evaluated by immersing epoxy-coated SiC/Si samples in aqueous solutions at various pHs at 60°C for selected times. Adhesion durability for the epoxy-coated SiC/Si systems was qualitatively evaluated by visual inspection to identify debonding and quantitatively evaluated with a probe test to determine the critical strain energy release rate, G c . Durability via either test approach varied as a function of surface treatment in this manner: oxygen plasma treatment plus silane modification > silane treated > no treatment. X-ray photoelectron spectroscopic characterization of surfaces was carried out following the surface treatments and after complete adhesion failure in the durability tests. The XPS results suggested that improved performance was due to plasma cleaning and modification of the substrate surface, promotion of silane surface interaction, and the formation of a thicker oxide layer.  相似文献   

12.
Displacement reactions between binary and ternary ceramics in the Ti–W–C system and reactive gaseous atmospheres are investigated in this work. Specifically, WC and 50:50 wt% TiC:WC solid solution powders were exposed to flowing hydrogen gas, or equilibrated against an excess of titanium in the presence of iodine, to form metallic tungsten and TiC solid products. In the case of pure WC reacting with hydrogen, transformation to metallic tungsten occurred as a result of removal of chemically bound carbon as gaseous hydrocarbons. In the case of pure WC reacting with titanium iodide vapors, transformation was accompanied by the appearance of TiC as a solid product formed at the gas-solid interface. In the case of 50:50 wt% TiC:WC solid solution powders, hydrogen was generally found to be an ineffective displacing reagent, whereas reaction with titanium iodide vapors was observed to proceed virtually to completion, resulting in a two phase product mixture comprising metallic tungsten and TiC. For the latter case, a variety of microstructures could be observed within a given batch, including tungsten platelets and/or lamellae in a TiC matrix, or coarse tungsten grains interspersed with TiC grains. These morphological variations are speculated to arise from compositional variation in the starting material and the occurrence of local rapid coarsening along fast diffusion pathways within reacting agglomerates and polycrystalline primary particles. The observed reaction products and relative efficacy of gaseous reagents to promote displacement reactions in the Ti–W–C system are rationalized on the basis of thermodynamic predictions. The reaction between 50:50 wt% TiC:WC solid solution powders and titanium iodide vapors constitutes the first known report of an internal displacement reaction proceeding via gaseous intermediates in a nonoxide ceramic system.  相似文献   

13.
《Ceramics International》2016,42(9):11177-11183
Dy2Ti2O7 ultrafine powders ranging from 100 to 300 nm were successfully synthesized by sol–gel method. Particularly, the dried gel precursor was treated at different temperatures (700–1000 °C) via microwave-heating, which contributed to decreasing the grain size and reaction time. The phase composition and structural evolution of the final products were examined by X-ray diffraction (XRD), scanning electron microscope (SEM) and transmission electron microscope (TEM). Furthermore, the resultant powders were selected to fabricate ceramics and rubber based absobers. Their sinterability, mechanical properties and neutron absorption ability were also studied. Results showed that the highest flexural strength of 99.0 MPa were obtained for Dy2Ti2O7 samples when sintered at 1600 °C for 2 h in air atmosphere. Meanwhile, the neutron absorption rate of Dy2Ti2O7 ceramics and rubber based absorbers could reach 97.39% and 80.00% respectively when the thickness of samples was set as 5.0 mm.  相似文献   

14.
Influence of mechanical alloying (MA) on SHS in low-caloric Nb–2Si mixtures was explored as a function of MA time and Si content of green mixtures. The use of MA was found to extend the concentration limits for combustion synthesis in the Nb–Si system to the following range: between 43 wt % Si–57 wt % Nb and 10 wt % Si–90 wt % Nb. Due to MA, SHS in Nb–Si blends can be carried out in a mode of solid–solid or liquid–solid reaction.  相似文献   

15.
The lower concentration limit of flammability of hydrocarbon-air mixtures has been studied experimentally and by numerical simulation. Simulation using a detailed mechanism of chemical reactions has shown that calculations results are in good agreement with experimental data on the effect of water vapor on the lean concentration limit of flammability of hydrocarbon mixtures with air. The presence of water vapor at low concentrations in the mixture does not affect the lower concentration limit of flammability, but, at the same time, significantly changes the flame propagation velocity. Key words: concentration limits of flammability, opposed-jet premixed flame, hydrocarbons.  相似文献   

16.
Composite materials based on refractory silicides, in particular their solid solutions, are widely used in many areas of engineering for parts of heating elements and heat resistance protective coatings. This paper presents the findings obtained in the study of peculiarities of solid-phase interaction during synthesis of Cr0.9Ta0.1Si2 and Cr0.5Ti0.5Si2 solid solutions depending on the synthesis conditions. The effect of the powder dispersity on compaction of targets from Cr0.9Ta0.1Si2 and Cr0.5Ti0.5Si2 powders has been studied, and it has been established that the use of nanosized powders complicates the process of pressing. Also, sintering of targets from nanosized Cr0.9Ta0.1Si2 and Cr0.5Ti0.5Si2 powders was studied. The sintered targets were established to have a small grain size and uniform porosity all over the volume. Thanks to small closed porosity, the targets exhibit high heat resistance under thermal shock.  相似文献   

17.
SiC particulates were mixed with Ag–Cu–Ti powders to fabricate SiCP/Ag–Cu–Ti (SICACT) sheets by tape casting process, which were used to braze the sintered SiC ceramics with the structure of SiC/Ag–Cu–Ti foil/SICACT sheet/Ag–Cu–Ti foil/SiC. Microstructure and joining strength both at room temperature and at high temperature were characterized by electron probe X-ray microanalyzer, electron dispersive spectroscopy, transmission electron microscopy, and flexural strength test. The SiC particulates from the SICACT sheets were randomly distributed in the filler alloy matrix and reacted with Ti from the filler alloy. Reaction products TiC and Ti5Si3 were found in the interfacial reaction layer. With the increase in SiC particulates volume fraction, the joining strength at room temperature first increased, and then decreased, which was affected by both CTE mismatch and the thickness of the reaction layer. In addition, the joining strength of joints brazed using SICACT sheets at 600?°C can reach 197 MPa, which was obviously higher than that brazed using Ag–Cu–Ti filler alloy.  相似文献   

18.
The microstructure of composite materials of the composition SiC–C is analyzed. It is established that they are a separate group of materials containing a ceramic matrix. The ceramic matrix experiences tensile stresses, as a result of which within the composite material a traditional internal stress field is distorted. The ceramic matrix increases strength at carbon phase boundaries of the composite material, and it reduces porosity. An excess of ceramic material reduces strength and thermal stress resistance. Requirements are provided for porosity of the structure that govern the optimum field of material composition.  相似文献   

19.
《Ceramics International》2023,49(12):20017-20023
The TixZr1-xC solid solutions were synthesized by electro-thermal explosion under pressure in the (Ti + Zr + C) blends mechanically activated in hexane (MA-ETE). The effect of mechanical activation (MA) duration on reaction blend characteristics, ETE parameters, phase composition, and microstructure formation in solid solutions was investigated. At MA, the Ti + Zr blend deforms metal crystal lattices for 20 min, complete amorphization occurs for 40 min, and the carbide grains form a cubic structure for 90 min. The single-phase Zr0.50Ti0.50C solid solution with a grain size of 3–5 μm and a submicron composite with a grain size of 0.1–0.2 μm containing the Ti0.86Zr0.14C and Zr0.74Ti0.26C solid solutions were synthesized in a one-stage process for the first time without any additional thermotreatment. The influence of mechanical activation on diffusional mass transfer of reactants, structure, and phase formation is discussed.  相似文献   

20.
In the present research, SiC–B4C nano powders were synthesized through sol–gel process in water–solvent–catalyst–dispersant system. In order to evaluate the formation mechanism of the product during sol-gel process, TEM, SEM, DTA/TG, BET, XRD, FTIR and DLS analysis methods were employed. The nanometric size of precursor was controlled by dispersing agents and controlling pH inside the sol. DLS analysis revealed that the particles of the precursor inside the sol were below 10 nm. FTIR results indicated that the (Si–O–B) bonds were formed in the dried gel powder, due to hydrolysis and condensation reactions. DTA analysis confirmed that the synthesis temperature was lower than 1400 °C. XRD results implied the presence of cubic β-SiC and the rhombohedral B4C phases, which were formed simultaneously in the SiC–B4C nanopowder. BET analysis indicated a high surface area for the particles of about 171.42 m2/g, and that the surfaces of these particles were meso porous. SEM analysis exhibited that SiC– B4C particle size was in the range of 20–40 nm with homogenous morphology. Ultimately, the TEM/EDS microstructural analysis showed that B4C and SiC particles were formed simultaneously and uniformly in the final product.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号