首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A new transformation technique for evaluating nearly singular integrals   总被引:2,自引:2,他引:0  
Accurate evaluation of nearly singular integrals plays an important role in the overall accuracy of the Boundary Element Method (BEM). A new approach for the evaluation of nearly singular integrals particularly those with severe near singularity is described in this paper. This method utilizes a degenerate mapping to first reduce near singularity and then employs a variable transformation to further smooth out the resultant integrand. The accuracy and efficiency of the method are demonstrated through several examples that are commonly encountered in the applications of the BEM. Comparison of this method with some of the existing methods is also presented.  相似文献   

2.
The accurate numerical evaluation of nearly singular boundary integrals is a major concerned issue in the implementation of the boundary element method (BEM). In this paper, the previous distance transformation method is extended into triangular elements both in polar and Cartesian coordinate systems. A new simple and efficient method using an approximate nearly singular point is proposed to deal with the case when the nearly singular point is located outside the element. In general, the results obtained using the polar coordinate system are superior to that in the Cartesian coordinate system when the nearly singular point is located inside the element. Besides, the accuracy of the results is influenced by the locations of the nearly singular point due to the special topology of triangular elements. However, when the nearly singular point is located outside the element, both the polar and Cartesian coordinate systems can get acceptable results.  相似文献   

3.
An implementation of the boundary element method requires the accurate evaluation of many integrals. When the source point is far from the boundary element under consideration, a straightforward application of Gaussian quadrature suffices to evaluate such integrals. When the source point is on the element, the integrand becomes singular and accurate evaluation can be obtained using the same Gaussian points transformed under a polynomial transformation which has zero Jacobian at the singular point. A class of integrals which lies between these two extremes is that of ‘nearly singular’ integrals. Here, the source point is close to, but not on, the element and the integrand remains finite at all points. However, instead of remaining flat, the integrand develops a sharp peak as the source point moves closer to the element, thus rendering accurate evaluation of the integral difficult. This paper presents a transformation, based on the sinh function, which automatically takes into account the position of the projection of the source point onto the element, which we call the ‘nearly singular point’, and the distance from the source point to the element. The transformation again clusters the points towards the nearly singular point, but does not have a zero Jacobian. Implementation of the transformation is straightforward and could easily be included in existing boundary element method software. It is shown that, for the two‐dimensional boundary element method, several orders of magnitude improvement in relative error can be obtained using this transformation compared to a conventional implementation of Gaussian quadrature. Asymptotic estimates for the truncation errors are also quoted. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

4.
Accurate numerical integration of line integrals is of fundamental importance to reliable implementation of the boundary element method. Usually, the regular integrals arising from a boundary element method implementation are evaluated using standard Gaussian quadrature. However, the singular integrals which arise are often evaluated in another way, sometimes using a different integration method with different nodes and weights. Here, a co‐ordinate transformation technique is introduced for evaluating weakly singular integrals which, after some initial manipulation of the integral, uses the same integration nodes and weights as those of the regular integrals. The transformation technique is based on newly defined semi‐sigmoidal transformations, which cluster integration nodes only near the singular point. The semi‐sigmoidal transformations are defined in terms of existing sigmoidal transformations and have the benefit of evaluating integrals more accurately than full sigmoidal transformations as the clustering is restricted to one end point of the interval. Comparison of this new method with existing coordinate transformation techniques shows that more accurate evaluation of weakly singular integrals can be obtained. Based on observation of several integrals considered, guidelines are suggested for the type of semi‐sigmoidal transformation to use and the degree to which nodes should be clustered at the singular points. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

5.
There exist the nearly singular integrals in the boundary integral equations when a source point is close to an integration element but not on the element, such as the field problems with thin domains. In this paper, the analytic formulations are achieved to calculate the nearly weakly singular, strongly singular and hyper-singular integrals on the straight elements for the two-dimensional (2D) boundary element methods (BEM). The algorithm is performed after the BIE are discretized by a set of boundary elements. The singular factor, which is expressed by the minimum relative distance from the source point to the closer element, is separated from the nearly singular integrands by the use of integration by parts. Thus, it results in exact integrations of the nearly singular integrals for the straight elements, instead of the numerical integration. The analytic algorithm is also used to calculate nearly singular integrals on the curved element by subdividing it into several linear or sub-parametric elements only when the nearly singular integrals need to be determined. The approach can achieve high accuracy in cases of the curved elements without increasing other computational efforts. As an application, the technique is employed to analyze the 2D elasticity problems, including the thin-walled structures. Some numerical results demonstrate the accuracy and effectiveness of the algorithm.  相似文献   

6.
 A general algorithm of the distance transformation type is presented in this paper for the accurate numerical evaluation of nearly singular boundary integrals encountered in elasticity, which, next to the singular ones, has long been an issue of major concern in computational mechanics with boundary element methods. The distance transformation is realized by making use of the distance functions, defined in the local intrinsic coordinate systems, which plays the role of damping-out the near singularity of integrands resulting from the very small distance between the source and the integration points. By taking advantage of the divergence-free property of the integrals with the nearly hypersingular kernels in the 3D case, a technique of geometric conversion over the auxiliary cone surfaces of the boundary element is designed, which is suitable also for the numerical evaluation of the hypersingular boundary integrals. The effects of the distance transformations are studied and compared numerically for different orders in the 2D case and in the different local systems in the 3D case using quadratic boundary elements. It is shown that the proposed algorithm works very well, by using standard Gaussian quadrature formulae, for both the 2D and 3D elastic problems. Received: 20 November 2001 / Accepted: 4 June 2002 The work was supported by the Science Foundation of Shanghai Municipal Commission of Education.  相似文献   

7.
This work presents a further development of the distance transformation technique for accurate evaluation of the nearly singular integrals arising in the 2D boundary element method (BEM). The traditional technique separates the nearly hypersingular integral into two parts: a near strong singular part and a nearly hypersingular part. The near strong singular part with the one-ordered distance transformation is evaluated by the standard Gaussian quadrature and the nearly hypersingular part still needs to be transformed into an analytical form. In this paper, the distance transformation is performed by four steps in case the source point coincides with the projection point or five steps otherwise. For each step, new transformation is proposed based on the approximate distance function, so that all steps can finally be unified into a uniform formation. With the new formulation, the nearly hypersingular integral can be dealt with directly and the near singularity separation and the cumbersome analytical deductions related to a specific fundamental solution are avoided. Numerical examples and comparisons with the existing methods on straight line elements and curved elements demonstrate that our method is accurate and effective.  相似文献   

8.
A new transformation technique is introduced for evaluating the two‐dimensional nearly singular integrals, which arise in the solution of Laplace's equation in three dimensions, using the boundary element method, when the source point is very close to the element of integration. The integrals are evaluated using (in a product fashion) a transformation which has recently been used to evaluate one‐dimensional near singular integrals. This sinh transformation method automatically takes into account the position of the projection of the source point onto the element and also the distance b between the source point and the element. The method is straightforward to implement and, when it is compared with a number of existing techniques for evaluating two‐dimensional near singular integrals, it is found that the sinh method is superior to the existing methods considered, both for potential integrals across the full range of b values considered (0<b?10), and for flux integrals where b>0.01. For smaller values of b, the use of the Lmethod is recommended for flux integrals. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

9.
Accurate numerical determination of line integrals is fundamental to reliable implementation of the boundary element method. For a source point distant from a particular element, standard Gaussian quadrature is adequate, as well as being the technique of choice. However, when the integrals are weakly singular or nearly singular (source point near the element) this technique is no longer adequate. Here a co‐ordinate transformation technique, based on sigmoidal transformations, is introduced to evaluate weakly singular and near‐singular integrals. A sigmoidal transformation has the effect of clustering the integration points towards the endpoints of the interval of integration. The degree of clustering is governed by the order of the transformation. Comparison of this new method with existing co‐ordinate transformation techniques shows that more accurate evaluation of these integrals can be obtained. Based on observations of several integrals considered, guidelines are suggested for the order of the sigmoidal transformations. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

10.
The efficient numerical evaluation of integrals arising in the boundary element method is of considerable practical importance. The superiority of the use of sigmoidal and semi‐sigmoidal transformations together with Gauss–Legendre quadrature in this context has already been well‐demonstrated numerically by one of the authors. In this paper, the authors obtain asymptotic estimates of the truncation errors for these algorithms. These estimates allow an informed choice of both the transformation and the quadrature error in the evaluation of boundary element integrals with algebraic or algebraic/logarithmic singularities at an end‐point of the interval of integration. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

11.
Benefited from the accuracy improvement in modeling physical problem of complex geometry and integrating the discretization and simulation, the isogeometric analysis in boundary element method (IGABEM) has been drawn a great deal of attention. The nearly singular integrals of 2D potential problem in the IGABEM are addressed by a semianalytical scheme in the present work. We use the subtraction technique to separate the integrals to singular and nonsingular parts, where the singular parts can be calculated by the analytical formulae derived by utilizing a series of integration by parts, while the nonsingular parts are calculated numerically with fewer quadrature points. Comparing the present semianalytical results with the ones of exact solutions, we find that the present method can obtain precise potential and flux densities of inner points much closer to the boundary without refining the elements nearby. Sufficient comparisons with other regularization schemes, such as the exponential and sinh transformation methods, are also conducted. The results in the numerical examples show the competitiveness of the present method, especially when calculating the nearly strongly and highly singular integrals during the simulation of the flux density.  相似文献   

12.
In this paper, we propose an efficient strategy to compute nearly singular integrals over planar triangles in R 3 arising in boundary element method collocation. The strategy is based on a proper use of various non‐linear transformations, which smooth or move away or quite eliminate all the singularities close to the domain of integration. We will deal with near singularities of the form 1/r, 1/r2 and 1/r3, r=∥ x ? y ∥ being the distance between a fixed near observation point x and a generic point y of a triangular element. Extensive numerical tests and comparisons with some already existing methods show that the approach proposed here is highly efficient and competitive. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

13.
This paper presents a study of the performance of the non‐linear co‐ordinate transformations in the numerical integration of weakly singular boundary integrals. A comparison of the smoothing property, numerical convergence and accuracy of the available non‐linear polynomial transformations is presented for two‐dimensional problems. Effectiveness of generalized transformations valid for any type and location of singularity has been investigated. It is found that weakly singular integrals are more efficiently handled with transformations valid for end‐point singularities by partitioning the element at the singular point. Further, transformations which are excellent for CPV integrals are not as accurate for weakly singular integrals. Connection between the maximum permissible order of polynomial transformations and precision of computations has also been investigated; cubic transformation is seen to be the optimum choice for single precision, and quartic or quintic one, for double precision computations. A new approach which combines the method of singularity subtraction with non‐linear transformation has been proposed. This composite approach is found to be more accurate, efficient and robust than the singularity subtraction method and the non‐linear transformation methods. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

14.
采用边界元方法求解与运动介质相关声学问题时,难点之一是如何精确计算场点与源点重合所导致的奇异积分式。论文提出一种将具有奇性的单元面积分式拆分为奇性和非奇性积分部分分别进行计算的新方法。对奇性积分部分,经过严格的数学推导给出解析解;而对非奇性积分部分则通过高斯积分法处理。新方法可有效地提高边界元计算精度和效率,对运动介质中的有关声学问题的边界元数值计算具有重要意义。  相似文献   

15.
The paper deals with numerical integration of weakly singular integrals arising in 2D BEM. In all, three fundamental solutions are addressed: steady state conduction in moving bodies, axisymmetric potential and axisymmetric elasticity. It is shown how these fundamental solutions can be rearranged to a form suitable for logarithmically weighted Gaussian integration. An algorithm of evaluating weakly singular integrals for arbitrary location of the singular point is described.  相似文献   

16.
On employing isoparametric, piecewise linear shape functions over a flat triangular domain, exact expressions are derived for all surface potentials involved in the numerical solution of three‐dimensional singular and hyper‐singular boundary integral equations of potential theory. These formulae, which are valid for an arbitrary source point in space, are represented as analytic expressions over the edges of the integration triangle. They can be used to solve integral equations defined on polygonal boundaries via the collocation method or may be utilized as analytic expressions for the inner integrals in the Galerkin technique. In addition, the constant element approximation can be directly obtained with no extra effort. Sample problems solved by the collocation boundary element method for the Laplace equation are included to validate the proposed formulae. Published in 2008 by John Wiley & Sons, Ltd.  相似文献   

17.
For an isotropic linear elastic body, only displacement or traction boundary conditions are given on a part of its boundary, whilst all of displacement and traction vectors are unknown on the rest of the boundary. The inverse problem is different from the Cauchy problems. All the unknown boundary conditions on the whole boundary must be determined with some interior points' information. The preconditioned conjugate gradient method (PCGM) in combination with the boundary element method (BEM) is developed for reconstructing the boundary conditions, and the PCGM is compared with the conjugate gradient method (CGM). Morozov's discrepancy principle is employed to select the iteration step. The analytical integral algorithm is proposed to treat the nearly singular integrals when the interior points are very close to the boundary. The numerical solutions of the boundary conditions are not sensitive to the locations of the interior points if these points are distributed along the entire boundary of the considered domain. The numerical results confirm that the PCGM and CGM produce convergent and stable numerical solutions with respect to increasing the number of interior points and decreasing the amount of noise added into the input data.  相似文献   

18.
The subject of this paper is the evaluation of finite parts (FPs) of certain singular and hypersingular integrals, that appear in boundary integral equations (BIEs), when the source point is an irregular boundary point (situated at a corner on a one-dimensional plane curve or at a corner or edge on a two-dimensional surface). Two issues addressed in this paper are: an unified, consistent and practical definition of a FP with an irregular boundary source point, and numerical evaluation of such integrals together with solution strategies for hypersingular BIEs (HBIEs). The proposed formulation is compared with others that are available in the literature and interesting connections are made between this formulation and those of other researchers.  相似文献   

19.
Algorithms for the direct numerical evaluation of Cauchy-principal-value integrals in three-dimensional problems have recently been implemented. An application of one of these algorithms to infinite boundary elements and to semi-infinite special fundamental solutions is discussed.  相似文献   

20.
This work presents an improved approach for the numerical evaluation of nearly singular integrals that appear in the solution of two-dimensional (2D) boundary element method (BEM) using parabolic geometry elements. The proposed method is an extension of the sinh transformation, which is used to evaluate the nearly singular integrals on linear and/or circular geometry elements. The new feature of the present method is that the distance from the source point to parabolic elements is expressed as r2=(ξ?η)2g(ξ)+b2 where g(ξ) is a well-behaved function, η and b stand for the position of the projection of the nearly singular point and the shortest distance from the calculation point to the element, respectively. The sinh transformation therefore can be employed in a straight-forward fashion. The proposed method is shown to have the same advantages as the previous sinh transformation, in that it is straight-forward to implement, very accurate and can be applied to a wide class of nearly singular integrals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号