首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
《Ceramics International》2017,43(3):3231-3237
Manganese oxide is a promising active material for supercapacitors (SCs) with pseudocapacitance due to its high capacitance and its environmentally friendly character. This paper deals with the preparation of electrodes for supercapacitors consisting of manganese oxide supported onto graphite by electrophoretic deposition. Manganese oxide powders were characterized and dispersed in water by controlling the colloidal and rheological behavior in order to obtain stable suspensions. Optimized manganese oxide suspensions were deposited onto graphite electrodes by electrophoretic deposition. The deposited mass per unit area in the electrodes was optimized by controlling the applied current density and the deposition time. It has been demonstrated that the introduction of a binder helped to improve the adherence to graphite; otherwise the deposit thickness obtained by EPD is limited and no films can be obtained by simply dipping. These conditions allowed us to obtain more homogeneous deposits with higher specific energy than without binder.  相似文献   

2.
A method based on electrophoretic deposition (EPD) has been developed to produce uniform deposits of multi-walled carbon nanotubes on stainless-steel substrates. Aqueous suspensions were used under constant voltage conditions in the range of 5–50 V, with deposition times ranging from 0.5 to 10 min. The thickness of the coatings was controlled by variation of voltage and deposition time during EPD. Coatings of up to 10 μm thickness were achieved, with a homogeneous microstructure. The EPD technique is fast, effective, and can be applied to complex shapes. Possible applications are in heat extraction devices or porous coatings for tissue engineering scaffolds.  相似文献   

3.
Porous thick films of La0.6Sr0.4Co0.8Fe0.2O3?δ (LSCF) on Ce0.9Gd0.1O1.95 (CGO) substrates were prepared by the electrophoretic deposition (EPD) method. Organic suspensions of different compositions containing LSCF ceramic particles were investigated with the aim to determine the optimal composition of the suspension and EPD conditions. Stainless steel substrates were used in order to determine the optimal parameters for the EPD process. The best results were achieved with solutions containing acetylacetone, iodine and starch. The EPD conditions leading to uniform LSCF films were: applied voltage 20 V and deposition time 120 s, with the electrodes separated 1.5 cm. EPD was also demonstrated to be a simple and useful method for making porous LSCF cathodes on CGO substrates. It was shown that the microstructure of the films can be controlled by changing the applied voltage, deposition time and concentration of additives in suspension.  相似文献   

4.
《Ceramics International》2016,42(6):6807-6816
A novel sol–gel method has been developed to deposit multiferroic nanocrystalline bismuth ferrite (BFO) thin films over Pt/Ti/SiO2/Si substrate by spin-coating technique with various thicknesses. It is found that the deposition parameters significantly influence the quality and the thickness of BiFeO3 films. The films are all uniform and adherent to Pt/Ti/SiO2/Si substrate. The spin-coated films are characterized by X-ray diffraction (XRD), Scanning electron microscope (SEM), Atomic force microscope (AFM), photoluminescence spectroscopy (PL) and Fourier transform infrared spectroscopy (FTIR). Rhombohedral structure of BFO is confirmed from the XRD and FT-IR studies. The SEM image shows a porous structure formation of BFO over Pt/Ti/SiO2/Si substrate. The surface outgrowth for the films at various thicknesses is measured from root mean square (RMS) and surface roughness through AFM. The step height and the RMS are found to be high for the film at 500 nm in comparison with thickness of 200 nm. The influence of the dielectric properties of the porous BFO at different thicknesses is studied using LCRQ meter. Finally, the magnetic behavior of film is compared with MH hysteresis loop and Magnetoresistance (MR) studies.  相似文献   

5.
The purpose of this paper is to present an up-to-date comprehensive overview of current research progress in the development of carbon nanotube (CNT)–ceramic nanocomposites by electrophoretic deposition (EPD). Micron-sized and nanoscale ceramic particles have been combined with CNTs, both multiwalled and single-walled, using EPD for a variety of functional, structural and biomedical applications. Systems reviewed include SiO2/CNT, TiO2/CNT, MnO2/CNT, Fe3O4/CNT, hydroxyapatite (HA)/CNT and bioactive glass/CNT. EPD has been shown to be a very convenient method to manipulate and arrange CNTs from well dispersed suspensions onto conductive substrates. CNT–ceramic composite layers of thickness in the range <1–50 μm have been produced. Sequential EPD of layered nanocomposites as well as electrophoretic co-deposition from diphasic suspensions have been investigated. A critical step for the success of EPD is the prior functionalization of CNTs, usually by their treatment in acid solutions, in order to create functional groups on CNT surfaces so that they can be dispersed uniformly in solvents, for example water or organic media. The preparation and characterisation of stable CNT and CNT/ceramic particle suspensions as well as relevant EPD mechanisms are discussed. Key processing stages, including functionalization of CNTs, tailoring zeta potential of CNTs and ceramic particles in suspension as well as specific EPD parameters, such as deposition voltage and time, are discussed in terms of their influence on the quality of the developed CNT/ceramic nanocomposites. The analysis of the literature confirms that EPD is the technique of choice for the development of complex CNT–ceramic nanocomposite layers and coatings of high structural homogeneity and reproducible properties. Potential and realised applications of the resulting CNT–ceramic composite coatings are highlighted, including fuel cell and supercapacitor electrodes, field emission devices, bioelectrodes, photocatalytic films, sensors as well as a wide range of functional, structural and bioactive coatings.  相似文献   

6.
Boehmite/multi-wall carbon nanotube (MWCNT) composite powders were prepared by hydrothermal processing. Starting chemical of aluminum acetate powders (2Al(OH)(C2H3O2)2) and MWCNTs were mixed for the formation of stoichiometric boehmite powders in an attempt to synthesize MWCNT-reinforced boehmite nano-powders via hydrothermal synthesis at 200 °C for 2 h. Kinetically stable suspensions of MWCNT–boehmite composite powders were prepared and subsequently electrophoretic deposition (EPD) was applied to obtain complex shape products in the form of micro-gears. It is shown that the EPD technique is a powerful tool to manufacture small components in a short time. Detail TEM observations also indicated that hydrothermal processing provides an ideal environment to obtain homogeneous mixtures of MWCNT–boehmite powders due to effective surface functionalization of MWCNTs under hydrothermal conditions.  相似文献   

7.
We have investigated the processing of 0.65Pb(Mg1/3Nb2/3)O3–0.35PbTiO3 (denoted PMN–PT) thick films using an electrophoretic deposition process (denoted EPD), with the PMN–PT particles suspended in an ethanol-based suspension. The zeta-potential and the viscosity were measured to identify the conditions for the preparation of a stable suspension suitable for the EPD. The applied voltage, the deposition time, the chemical composition of the suspension and the concentration of the powder were investigated in order to obtain a high-quality PMN–PT deposit with a target thickness of about 50 μm. The PMN–PT thick films prepared from stoichiometric and PbO-excess suspensions by sintering at 950 and 1100 °C were examined by X-ray powder-diffraction analysis and scanning electron microscopy. The highest functional response was obtained for a homogeneous, dense, crack-free PMN–PT thick film prepared from a PMN–PT suspension with excess PbO. The film was deposited at a constant voltage of 10 V and for a time of 120 s, followed by sintering at 1100 °C in a PbO-rich atmosphere. The film's properties were as follows: a dielectric permittivity ? of 20,250 at a Tm of 172 °C, a remanent polarization of 17 μC/cm2 and a coercive field of 5 kV/cm.  相似文献   

8.
Electrophoretic deposition (EPD) was used to fabricate alumina matrix composites with high volume fraction of woven fibre mat (Nextel™ 720) reinforcement in a multilayer structure. Colloidal suspensions of Al2O3 nanoparticles in ethanol medium with addition of 4-hydrobezoic acid were used for EPD. Two different techniques were developed for fabrication of Al2O3 matrix/Nextel™ 720 fibre composites. The first method is a combination of standard EPD of single fibre mats with a subsequent lamination procedure to fabricate the multilayered composite. The second method involves the simultaneous infiltration of several (three or more) Nextel™ 720 fibre mats by EPD in a tailor-made cell. The composites exhibit a homogeneous matrix microstructure, characterised by a very high particle packing density and relatively low porosity after sintering at 1300 °C. The EPD cell allows production of relatively large bodies (10 cm diameter). By combination of the multilayer EPD infiltration and lamination processes developed here, thick ceramic matrix composite components (>10 mm thickness) can be fabricated, which opens the possibility of greater industrial application of the materials.  相似文献   

9.
Preparation of multiferroic BiFeO3(BFO) is reported using microwave heating. The prepared sample is characterized using x-ray diffraction, scanning electron microscopy, differential scanning calorimetry and leakage current measurements. It is observed that the BFO can be prepared with microwave heating at a fast heating rate, consisting of more homogeneous microstructure and better electrical properties. Phase purity of the sample is confirmed from x-ray diffraction measurements. Uniform grain size distribution is observed for the sample prepared with microwave heating. More than an order of magnitude reduction in the leakage current is observed for the sample prepared with microwave heating as compared to conventional radiant heating.  相似文献   

10.
0.2PbNi1/3Nb2/3–0.8Pb(Zr,Ti)O3 (PNN–PZT) thick films were deposited on Pt wire with the diameter of 50 μm by electrophoretic deposition (EPD) method. The EPD deposition times on the microstructures of PNN–PZT thick films were investigated. By optimizing the EPD process, the Pt wire can be uniformly wrapped with the PNN–PZT powders. During the sintering process, the as-deposited PNN–PZT/Pt wires were buried in the mixed powders of PbCO3 and ZrO2, and then sintered in the optimal temperature to get a dense microstructure. The piezoelectric properties of the thick films were characterized by scanning force microscopy (SFM) method. The results show that the PNN–PZT thick films prepared by EPD method have good piezoelectricity.  相似文献   

11.
The microstructure of BiFeO3 (BFO) thin films is investigated using high-resolution transmission electron microscopy. Both (001)- and (101)-type domain boundaries are found in the BFO films. The antipolar clusters induced by antiparallel cation displacements are observed in the pure BFO film, and the cation displacements in the films are proved to originate from the lattice strain which can be adjusted by introduction of a buffer layer. Combining transmission electron microscopy (TEM) with fast Fourier transformation techniques, both γ-Fe2O3 and FeO phases were discovered. The γ-Fe2O3 phase stems from the decomposition of stoichiometric BFO due to the volatilization of Bi, while the FeO phase results from the decomposition of BFO with oxygen vacancies which could come from ion milling process during the TEM sample preparation. Our work sheds light on the origin of the cation displacements and provides a new idea to control the physical properties of BFO films.  相似文献   

12.
Free-standing films of multi-walled carbon nanotubes (MWCNTs), also known as buckypapers, have been fabricated by a two-step process using electrophoretic deposition (EPD). Films of the multi-walled carbon nanotubes were cast onto stainless steel electrodes from aqueous suspensions by EPD. Using a facile mechanical cleavage technique, the films were liberated from their underlying electrodes to yield the buckypapers. We investigated the films’ thickness, morphology, and surface topology using, respectively, profilometry, scanning electron microscopy, and atomic force microscopy. Mechanical characterization of the buckypapers revealed the average tensile strength and Young’s modulus to be 14.5 MPa and 3.3 GPa, respectively. This fabrication approach provides a cost effective, rapid, and reproducible method to make films of MWCNTs with a range of thicknesses and macroscopic lateral dimensions.  相似文献   

13.
The BiFeO3 (BFO) thin film was deposited by pulsed-laser deposition on SrRuO3 (SRO)-buffered (111) SrTiO3 (STO) substrate. X-ray diffraction pattern reveals a well-grown epitaxial BFO thin film. Atomic force microscopy study indicates that the BFO film is rather dense with a smooth surface. The ellipsometric spectra of the STO substrate, the SRO buffer layer, and the BFO thin film were measured, respectively, in the photon energy range 1.55 to 5.40 eV. Following the dielectric functions of STO and SRO, the ones of BFO described by the Lorentz model are received by fitting the spectra data to a five-medium optical model consisting of a semi-infinite STO substrate/SRO layer/BFO film/surface roughness/air ambient structure. The thickness and the optical constants of the BFO film are obtained. Then a direct bandgap is calculated at 2.68 eV, which is believed to be influenced by near-bandgap transitions. Compared to BFO films on other substrates, the dependence of the bandgap for the BFO thin film on in-plane compressive strain from epitaxial structure is received. Moreover, the bandgap and the transition revealed by the Lorentz model also provide a ground for the assessment of the bandgap for BFO single crystals.  相似文献   

14.
《Ceramics International》2015,41(8):9265-9275
Calcium (Ca)-doped bismuth ferrite (BiFeO3) thin films prepared by using the polymeric precursor method (PPM) were characterized by X-ray diffraction (XRD), atomic force microscopy (AFM), polarization and magnetic measurements. Structural studies by XRD and Rietveld refinement reveal the co-existence of distorted rhombohedral and tetragonal phases in the highest doped BiFeO3 (BFO) where enhanced ferroelectric and magnetic properties are produced by internal strain. A high coercive field in the hysteresis loop is observed for the BiFeO3 film. Fatigue and retention free characteristics are improved in the highest Ca-doped sample due to changes in the crystal structure of BFO for a primitive cubic perovskite lattice with four-fold symmetry and a large tetragonal distortion within the crystal domain.  相似文献   

15.
In this work, yttria-stabilized zirconia (YSZ) nanoparticles were covered by a thin Ni layer with approximately 10 nm thickness by electroless deposition method to reduce sintering temperature of the ceramic coating which was applied on a Ni based superalloy via electrophoretic deposition (EPD). Suspensions containing the processed Ni-YSZ core-shell nanoparticles in acetone and isopropyl alcohol solvents were stabilized by addition of 0.4 wt% iodine and 1.5 wt% polyethylenimine, respectively, to find more effective stabilization method for EPD. It was seen that the presence of the Ni layer on YSZ nanoparticles improved performance and sticking factor of EPD and uniform coatings were obtained in both suspensions. The Ni-YSZ green coating which was produced by EPD at voltage of 35 V and deposition time of 30 min in acetone with thickness of 41 μm was sintered in 1100 °C and finally a uniform NiO-YSZ coating was formed on the metallic surface.  相似文献   

16.
《应用陶瓷进展》2013,112(4):186-195
Abstract

Multiwalled carbon nanotube (CNT) films have been successfully fabricated by electrophoretic deposition (EPD) on stainless steel substrates. Electrophoretic deposition was performed using optimised aqueous suspensions under constant voltage conditions. Triton X-100 was used as a surfactant to disperse CNT bundles, and iodine was added as a particle charger. CNT/SiO2 composite coatings were prepared by electrophoretic co-deposition. Experimental results show that the CNTs were efficiently mixed with SiO2 nanoparticles to form a network structure. Layered CNT/SiO2 porous composites were obtained by sequential EPD experiments alternating the deposition of CNT and SiO2 nanoparticles. The structure of all films deposited was studied in detail by scanning electron microscopy. Possible applications of CNT and CNT/SiO2 films are as porous coatings in the biomedical field, thermal management devices, biomedical sensors and other functional applications where the properties of CNTs are required.  相似文献   

17.
Electrophoretic deposition of carbon nanotubes   总被引:1,自引:0,他引:1  
Electrophoretic deposition (EPD) has been gaining increasing interest as an economical and versatile processing technique for the production of novel coatings or films of carbon nanotubes (CNTs) on conductive substrates. The purpose of the paper is to present an up-to-date comprehensive overview of current research progress in the field of EPD of CNTs. The paper specifically reviews the preparation and characterisation of stable CNT suspensions, and the mechanism of the EPD process; it includes discussion of pure CNT coatings and CNT/nanoparticle composite films. A complete discussion of the EPD parameters is presented, including electrode materials, deposition time, electrode separation, deposition voltage and resultant electric field. The paper highlights potential applications of the resulting CNT and CNT/composite structures, in areas such as field emission devices, fuel cells, and supercapacitors.  相似文献   

18.
Electrophoretic deposition (EPD) method is employed to obtain mesoporous TiO2 film on a titanium (Ti) foil; the film is then mechanically compressed and sintered at 350 °C before being subjected to dyeing. A comprehensive study was made on the mechanistic aspects of the EPD process. The dye-sensitized solar cell (DSSC) using the thus formed TiO2 film rendered a power conversion efficiency (Eff.) of 6.5%. Effects of various compression pressures on the photovoltaic parameters and on other characteristic parameters of the pertinent DSSCs are studied. Electrochemical impedance spectroscopy (EIS) is applied for the first time, using a novel equivalent model, to study the impedance behavior of the DSSC with this type of TiO2 film. We also obtain characteristic parameters of the TiO2 photoanode by using EIS. The coordination number of the TiO2 film, and the ratio of charge transfer resistances of electron recombination and electron transport are also obtained and analyzed. Moreover, we employ a multilayer approach and increase the film thickness to prepare TiO2 films with the same coordination number and porosity; DSSCs using such TiO2 films obtained from P90 and P25 rendered efficiencies of 6.5% and 5.24%, respectively. Scanning electron microscopy (SEM) micrographs are obtained to characterize the TiO2 films formed by the EPD technique and laser-induced transient technique is used to estimate the electron lifetime in the TiO2 films.  相似文献   

19.
Single-walled carbon nanotube-coated electrodes were fabricated from functionalized nanotube aqueous suspensions by the electrophoretic deposition (EPD) method for a potential large-scale production of nanostructured electrical components. The dependences of nanotube coatings and their electrochemical properties on the processing temperature of EPD were investigated. Optical and scanning electron microscope images were used to examine the microstructure, surface roughness, and thickness of the nanotube-based electrodes. The BET-specific surface area and the average pore size were analyzed. The prepared electrodes were characterized by cyclic voltammetry and their specific capacitances were measured. Correlations between the processing temperature and the electrode capacitance, nanotube loading, specific surface area, and average pore size were experimentally characterized.  相似文献   

20.
Electrophoretic deposition (EPD) was used for the fabrication of piezoelectric [lead zirconate titanate (PZT)] thick films on alumina substrates. The EPD was performed in constant current mode from an ethanol based suspension consisting of PZT and PbO particles. The influence of addition of ethyl cellulose (EC) and sintering temperature on the thickness, density, homogeneity and functional response of PZT thick films is studied. Results show that the highest electromechanical performance is obtained for the PZT thick films sintered at 900 or 950°C, with a thickness coupling factor kt of 50%. The addition of EC influenced the thickness of the PZT thick films but had only minor effect on the porosity content for sintering temperatures over 900°C. Moreover, elastic constants of the thick films based on the suspension with EC were lower, which leads to lower acoustic impedance (15?MRa) while maintaining high (kt) value. In this last case, a better acoustic matching can be expected with propagation media such as water or biological tissues for ultrasound medical imaging applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号