首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Nanostructured 13 wt% Al2O3–8 wt% Y2O3–ZrO2 (13AlYSZ) coatings were developed by atmospheric plasma spraying (APS). The phase structure and the morphology of the 13AlYSZ coatings were characterized using X-ray diffraction (XRD), scanning electron microscope (SEM) and transmission electron microscope (TEM). It was found that the as-sprayed coatings mainly consisted of tetragonal zirconia, with the Al element solid solution in ZrO2. Heat treatment at 1100 °C increased the average grain size of the ZrO2 phase from 61 to 120 nm and decreased the porosity from 23.8 to 18%. The addition of the nano-Al2O3 can effectively inhibit the grain growth of the zirconia phase. The mechanism on inhibiting the grain growth of nanostructured 8 wt% Y2O3–ZrO2 thermal barrier coatings has been discussed in detail.  相似文献   

2.
3.
Al2O3/Y3Al5O12/ZrO2 directionally solidified ceramic has been considered as a promising candidate for ultrahigh temperature structural materials due to its excellent performance even close to its melting point. In this work, laser floating zone (LFZ) solidification experiments were performed on Al2O3/Y3Al5O12/ZrO2 hypereutectic with the solidification rates between 2 μm/s and 30 μm/s. The full eutectic lamellar microstructure is obtained with hypereutectic composition. The solid/liquid interface morphology is investigated. The microstructure characteristic is discussed based on the solid/liquid interface. The variation of lamellar spacing with different compositions and solidification rates was reported and discussed by considering an irregular eutectic growth model. The maximum hardness and fracture toughness are 19.06 GPa and 3.8 MPa m1/2, respectively. The toughening mechanism of ZrO2 is discussed based on the scenario of the crack propagation pattern.  相似文献   

4.
5.
Fully densified B6O materials with Al2O3/Y2O3 sintering additives amounts systematically varied between 0 and 15 vol.% and Al2O3/(Al2O3 + Y2O3) molar ratios of 0.05–1 were prepared by FAST/SPS and HIP at sintering temperatures between 1725 °C and 1900 °C. Their densification and microstructure were correlated with measured mechanical properties. The addition of low additive amounts in the range of 2–3 vol.% was found to increase the fracture toughness and strength from 2.0 MPa m1/2 (SEVNB) and 420 MPa for pure B6O to about 3.0 MPa m1/2 and 540 MPa, but it had no effect on the hardness, which remained at a high level of 30–36 GPa (HV0.4). Higher additive contents did not yield a further improvement in the toughness but resulted in a reduction in hardness and strength.  相似文献   

6.
We report on how the mechanical properties of sintered ceramics (i.e., a random mixture of equiaxed grains) with the Al2O3–Y2O3–ZrO2 eutectic composition compare with those of rapidly or directionally solidified Al2O3–Y2O3–ZrO2 eutectic melts. Ceramic microcomposites with the Al2O3–Y2O3–ZrO2 eutectic composition were fabricated by sintering in air at 1400–1500 °C, or hot pressing at 1300–1400 °C. Fully dense, three phase composites of Al2O3, Y2O3-stabilized ZrO2 and YAG with grain sizes ranging from 0.4 to 0.8 μm were obtained. The grain size of the three phases was controlled by the size of the initial powders. Annealing at 1500 °C for 96 h resulted in grain sizes of 0.5–1.8 μm. The finest scale microcomposite had a maximum hardness of 19 GPa and a four-point bend strength of 282 MPa. The fracture toughness, as determined by Vickers indentation and indented four-point bending methods, ranged from 2.3 to 4.7 MPa m1/2. Although strengths and fracture toughnesses are lower than some directionally or rapidly solidified eutectic composites, the intergranular fracture patterns in the sintered ceramic suggest that ceramic microcomposites have the potential to be tailored to yield stronger, tougher composites that may be comparable with melt solidified eutectic composites.  相似文献   

7.
Nanofibrillar Al2O3–Y3Al5O12–ZrO2 eutectic rods were manufactured by directional solidification from the melt at high growth rates in an inert atmosphere using the laser-heated floating zone method. Under conditions of cooperative growth, the ternary eutectic presented a homogeneous microstructure, formed by bundles of single-crystal c-oriented Al2O3 and Y3Al5O12 (YAG) whiskers of ≈100 nm in width with smaller Y2O3-doped ZrO2 (YSZ) whiskers between them. Owing to the anisotropic fibrillar microstructure, Al2O3–YAG–YSZ ternary eutectics present high strength and toughness at ambient temperature while they exhibit superplastic behavior at 1600 K and above. Careful examination of the deformed samples by transmission electron microscopy did not show any evidence of dislocation activity and superplastic deformation was attributed to mass-transport by diffusion within the nanometric domains. This combination of high strength and toughness at ambient temperature together with the ability to support large deformations without failure above 1600 K is unique and shows a large potential to develop new structural materials for very high temperature structural applications.  相似文献   

8.
MoSi2, MoSi2–10 vol.% Al2O3, MoSi2–30 vol.% Al2O3 (denoted as MA0, MA1, MA3, respectively) coatings were fabricated by vacuum plasma spraying (VPS), and their oxidation behavior was examined at low temperature (500 °C) and high temperature (1500 °C). The test at 500 °C showed that the addition of Al2O3 effectively restrained the pest oxidation of MoSi2. The MA1 coating had satisfactory fluid surface and presented good oxidation resistance at 1500 °C. However, the MA3 coating showed worse oxidation resistant behavior compared with the MA0 coating because of mullite formation.  相似文献   

9.
10.
The densification behaviors (include α–β transformation) and high-temperature characteristics (especially oxidation resistance and high-temperature strength properties) of Si3N4 sintered bodies using Al2O3–Yb2O3 based sintering additive are investigated.Densification and α–β transformation behaviors were investigated by varying the compositions of Al2O3–Yb2O3 additives. In terms of the influence of the Y2O3/Al2O3 ratio on densification behavior, a greater Yb2O3/Al2O3 ratio tends to inhibit densification. The α–β transformation tended to be delayed in sintered bodies with a small additive amount of 3.4 mass%. Compared with the transformation behaviors of the sintered bodies using Al2O3–Y2O3 additives, those using Al2O3–Yb2O3 additives exhibited a narrower temperature zone for α–β transformation, which attributed to the finer structure for the sintered body using Al2O3–Yb2O3 additives. This is affected by the difference in solubility of Si3N4 in the two kinds of glass phase.High room temperature strength of 900–1000 MPa was obtained for sintered bodies with a 10.0 mass% addition of additives, and this is considered to be due to the finer micro-structure. Precipitation of a Yb4Si2N2O7 phase at the grain boundary glass phase, as induced by crystallization processing, enables the improvement of 1300 °C strength to about 650–720 MPa. Crystallization processing resulted in a 30% reduction in the amount of weight change during oxidation (from 3.42 to 2.46 mg/cm2), demonstrating the effectiveness in improving oxidation resistance.  相似文献   

11.
《Ceramics International》2016,42(15):16640-16643
Transparent Y2O3 ceramics were fabricated by the solid-state reaction and vacuum sintering method using La2O3, ZrO2 and Al2O3 as sintering aids. The microstructure of the Y2O3 ceramics sintered from 1550 °C to 1800 °C for 8 h were analyzed by SEM. The sintering process of the Y2O3 transparent ceramics was optimized. The results showed that when the samples were sintered at 1800 °C for 8 h under vacuum, the average grain sizes of the ceramics were about 3.5 µm. Furthermore, the transmittance of Y2O3 ceramic sintered at 1800 °C for 8 h was 82.1% at the wavelength around the 1100 nm (1 mm thickness), which was close to its theoretical value. Moreover, the refractive index of the Y2O3 transparent ceramic in the temperature range from 30 °C to 400 °C were measured by the spectroscopic ellipsometry method.  相似文献   

12.
The effect of Si additions on the oxidation behavior of Cr2AlC based coatings is investigated. Oxidation experiment was performed at 1120 °C in air for 4 h for Cr2AlC and Cr2Al1xSixC (0 < x  0.06) coatings. The crystal structure, microstructure and chemical composition of the as-deposited as well as oxidized coatings have been investigated. Alloying Cr2AlC with up to 0.7 at.% Si causes an increase in Al2O3 scale thickness by up to 40 ± 17%. Electron microscopy and atom probe tomography data support the notion that the here reported Si concentration induced 40% increase in Al2O3 layer thickness (during oxidation at 1120 °C for 4 h) is enabled by the Si concentration induced, and hence concomitant, increase in nucleation density of Al2O3.  相似文献   

13.
The aqueous colloidal processing of SiC with Y3Al5O12 liquid-phase sintering additives was investigated for two different additive systems, one the mixture of Y2O3 and Al2O3 in a 3:5 molar ratio and the other directly Y3Al5O12. The investigation involved the study of the colloidal stability of the different components, and the comparison of the rheological behaviour of concentrated suspensions of SiC, SiC + 3Y2O3:5Al2O3, and SiC + Y3Al5O12 as a function of the sonication condition, dispersant content, and solid loading. This allowed appropriate conditions for the preparation of well-dispersed, single-phase, and multi-component concentrated suspensions of SiC to be identified. It was found that the multi-component suspensions have better rheological behaviour than the single-phase ones, and that in terms of rheology and slip casting the Y3Al5O12 additives are more functional than the conventional 3Y2O3 + 5Al2O3 additives. It was also demonstrated that the Y3Al5O12 additive is as effective as the 3Y2O3 + 5Al2O3 additive in densifying SiC via liquid-phase sintering, with there existing no differences either in the microstructure or in room-temperature mechanical properties (hardness, toughness, and fracture mode). Implications of interest for the wet-shaping of complex SiC parts are discussed.  相似文献   

14.
Four glass-ceramic filler compositions within the Y2O3–Al2O3–SiO2 system were tested for their suitability in laser-supported joining of SiC materials. The compositions differed in terms of their primary crystallization behavior. Joint zone microstructures were investigated and joint tightness was determined using helium leak rate measurements after joining and subsequent annealing at 900 °C and 1050 °C.Yttria- and silica-rich compositions showed a partial crystallization of yttrium silicates during the short laser processing. Subsequent heat treatment effected further crystallization toward equilibrium conditions. Despite the strong change in the degree of crystallization no reduction of the tightness was observed for the best compositions; after 500 h annealing at 1050 °C tightness values of less than 10−8 mbar l s−1 were measured. These results demonstrate the potential of the investigated filler system for high temperature stable hermetic sealing. At the same time the creation of homogeneously structured joints from glass-ceramic fillers using a laser-supported technology needs the understanding of the crystallization kinetics.  相似文献   

15.
The crystallisation of amorphous precursors has been studied in the whole range of composition in the Al2O3–SiO2 system. The amorphous precursors have been obtained by hydrolysing TEOS directly in a diluted aqueous solution of aluminium nitrate, spray drying the clear solution and heating the resulting powder. Up to 70 mol % Al2O3, only mullite crystallises around 980–1000 °C; between 70 and 80 mol % Al2O3 mullite and spinel crystallise together; and for more than 80 mol % Al2O3 only spinel is formed. In the 70–80 mol % Al2O3 range of composition, when both mullite and spinel crystallise, low heating favours the crystallisation of mullite and it is nearly possible to crystallise only mullite from a 75 mol % Al2O3 sample. By rapid heating it is also possible to crystallise only spinel from the same 75 mol % Al2O3 precursor. The enthalpy and the activation energy for crystallisation are maximum for 60–80 mol % Al2O3. Heating the samples up to 1700 °C for 1 h, the phase equilibrium is not reached, particularly when both mullite and spinel crystallise together, and θ-Al2O3 is still present.  相似文献   

16.
《Ceramics International》2017,43(15):12126-12137
Mechanical resistance of Al2O3 + TiO2 nanocomposite ceramic coating deposited by electrostatic spray deposition method onto X10CrAlSi18 steel to thermal and slurry tests was investigated. The coating was produced from colloidal suspension of TiO2 nanoparticles dispersed in 3 wt% solution of Al2(NO3)3, as Al2O3 precursor, in ethanol. TiO2 nanoparticles of two sizes, 15 nm and 32 nm, were used in the experiments. After deposition, coatings were annealed at various temperatures, 300, 1000 and 1200 °C, and next exposed to cyclic thermal and slurry tests. Regardless of annealing temperature and the size of TiO2 nanoparticles, the outer layer of all coatings was porous. The first five thermal cycles caused a rapid increase of aluminum content of the surface layer to 30–37 wt%, but further increase in the number of thermal cycles did not affect the aluminum content. The oxidation rate of coating-substrate system was lower during the thermal tests than during annealing. The oxidation rate was also lower for smaller TiO2 particles (15 nm) forming the coating than for the larger ones (32 nm). The protective properties of Al2O3 + TiO2 coating against intense oxidation of substrate were lost at 1200 °C. Slurry tests showed that coatings annealed at 1000 °C had the best slurry resistance, but thermal tests had weakened this slurry resistance, mainly due to decreasing adhesion of the coating.  相似文献   

17.
In the present study, an Al2O3/Ni nanocomposite containing 5 vol% Ni is prepared by pressureless sintering at 1400°C for 2 h. Most nickel inclusions, around 70% in the sintered nanocomposite, locate at the intergranular sites, the triple junctions and Al2O3/Al2O3 grain boundaries. The average size of the nickel inclusions at the triple junctions, grain boundaries and intragranular locations is 145, 131 and 73 nm, respectively. The average size of all nickel inclusions is 118 nm. The presence of nickel inclusions can prohibit the grain growth of matrix grains. The size of Al2O3 grains in the sintered nanocomposite is only 490 nm. The strength of the nanocomposite is thus high for the refined microstructure. The matrix Al2O3 grains and Ni inclusions at triple junctions underwent considerable coarsening during a post-annealing treatment at 1300°C for 2 h. The strength of the annealed composites is thus reduced significantly after annealing.  相似文献   

18.
Alumina ceramics reinforced with 1, 3, or 5 vol.% multi-walled carbon nanotubes (CNTs) were densified by pressureless sintering. Commercial CNTs were purified by acid treatment and then dispersed in water at pH 12. The dispersed CNTs were mixed with Al2O3 powder, which was also dispersed in water at pH 12. The mixture was freeze dried to prevent segregation by differential sedimentation during solvent evaporation. Cylindrical pellets were formed by uniaxial pressing and then densified by heating in flowing argon. The resulting pellets had relative densities as high as ~99% after sintering at 1500 °C for 2 h. Higher temperatures or longer times resulted in lower densities and weight loss due to degradation of the CNTs by reaction with the Al2O3. A CNT/Al2O3 composite containing 1 vol.% CNT had a higher flexure strength (~540 MPa) than pure Al2O3 densified under similar conditions (~400 MPa). Improved fracture toughness of CNT–Al2O3 composites was attributed to CNT pullout. This study has shown, for the first time, that CNT/Al2O3 composites can be densified by pressureless sintering without damage to the CNTs.  相似文献   

19.
The solidification path of the Al2O3–Y2O3–ZrO2 ternary oxide eutectic composite ceramic is determined by a high temperature DTA and laser floating zone (LFZ) directional solidification method to investigate the effect of solidification path on the microstructure of the ternary oxide. The DTA and microstructure analyses show that the YAG or Al2O3 tends to form as primary phase under the unconstrained solidification conditions, and then the system enters ternary eutectic solidification during cooling from 1950 °C at rate of 20 °C/min. The as-solidified composite ceramic shows a divorced irregular eutectic structure consisting of Al2O3, YAG and ZrO2 phases with a random distribution. The primary phases are however completely restrained at the directional solidification conditions with high temperature gradient, and the ternary composite by LFZ presents well coupled eutectic growth with ultra-fine microstructure and directional array. Furthermore, the eutectic transformation and growth mechanism of the composite ceramic under different solidification conditions are discussed.  相似文献   

20.
The phase diagram of the Al2O3–ZrO2–La2O3 system was constructed in the temperature range 1250–2800 °C. The liquidus surface of the phase diagram reflects the preferentially eutectic interaction in the system. Three new ternary and two new binary eutectics were found. The minimum melting temperature is 1665 °C and it corresponds to the ternary eutectic LaAlO3 + T-ZrO2 +  La2O3·11Al2O3. The solidus surface projection and the schematic of the alloy crystallization path confirm the preferentially congruent character of phase interaction in the ternary system. The polythermal sections present the complete phase diagram of the Al2O3–ZrO2–La2O3 system. No ternary compounds or regions of remarkable solid solution were found in the components or binaries in this ternary system. The latter fact is the theoretical basis for creating new composite ceramics with favorable properties in the Al2O3–ZrO2–La2O3 system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号