首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In order to improve the oxidation protective ability of SiC-coated carbon/carbon (C/C) composites, a SiC–Si–ZrB2 multiphase ceramic coating was prepared on the surface of SiC-coated C/C composite by the process of pack cementation. The microstructures of the coating were characterized using X-ray diffraction and scanning electron microscopy. The coating was found to be composed of SiC, Si and ZrB2. The oxidation resistance of the coated specimens was investigated at 1773 K. The results show that the SiC–Si–ZrB2 can protect C/C against oxidation at 1773 K for more than 386 h. The excellent oxidation protective performance is attributed to the integrity and stability of SiO2 glass improved by the formation of ZrSiO4 phase during oxidation. The coated specimens were given thermal shocks between 1773 K and room temperature for 20 times. After thermal shocks, the residual flexural strength of the coated C/C composites was decreased by 16.3%.  相似文献   

2.
In order to improve the oxidation resistance of C/C composites, a ZrB2–SiC/SiC oxidation protective dual-layer coating was prepared by a pack cementation combined with the slurry paste method. The phase and microstructure of the coating were characterised by X-ray diffraction, scanning electron microscope and energy-dispersive spectrometer analyses. The anti-oxidation and thermal shock resistance of the coating were also investigated. It was found that the ZrB2–SiC/SiC coating could effectively improve the oxidation resistance of the C/C composites. The weight loss of the coated samples was only 1.8% after oxidation at 1773?K for 18?h in air. The coating endured 20 thermal shock cycles between 1773?K and room temperature with only 4.6% weight loss.  相似文献   

3.
To improve the oxidation protective ability of carbon/carbon composites, ZrB2–SiC gradient coating was prepared on the surface of C/C composites by an in-situ reaction method. The ZrB2–SiC gradient coating consisted of an inner ZrB2–SiC layer and an outer ZrB2–SiC–Si coating. The phase composition and microstructures of the multiphase coating were characterized by XRD, EDS and SEM. Results showed that the inner coating is mainly composed of ZrB2 and SiC, while the outer multiphase coating is composed of ZrB2, SiC and Si. The multilayer coating is about 200 μm in thickness, which has no penetration crack or big hole. The oxidation behavior of the coated C/C composites at 1773 K in air was investigated. Results show that the gradient ZrB2–SiC oxidation protective coating could protect C/C from oxidation for 207 h with only (4.56±1.2)×10−3 g/cm2 weight loss, owing to the compound silicate glass layer with the existence of thermally stable phase ZrSiO4.  相似文献   

4.
To prevent carbon/carbon (C/C) composites from oxidation, a Si–SiC coating has been prepared by a two-step pack cementation technique. X-ray diffraction (XRD) and scanning electron microscopy (SEM) analysis show that the coating obtained by the first step pack cementation is a porous β-SiC structure, and a dense structure consisting α-SiC, β-SiC and Si is obtained after heat-treatment by the second step pack cementation. By energy dispersive spectroscopy (EDS) analysis, a gradient C–SiC transition layer can be formed at the C/C-coating interface. The as-received coating has excellent oxidation protection ability and can protect C/C composites from oxidation for 166 h at 1773 K in air. The weigh loss of the coated C/C is due to the formation of bubble holes on the coating surface and through-coating cracks in the coating.  相似文献   

5.
《Ceramics International》2015,41(6):7677-7686
Ablation behavior of ZrB2–SiC protective coating for carbon/carbon composites during oxyacetylene flame test at 2500 °C was investigated by analyzing the microstructure differentiation caused by the increasing intensity of ablation from the border to the center of the surface. After ablation, a continuous SiO2 scale, a porous SiO2 layer inlaid with fine ZrO2 nuclei, and a continuous ZrO2 scale respectively emerged in the border region, the transitional region, and the center region. In order to investigate the ablation microstructure in the initial stage, the sub-layer microstructure was characterized and found to be mainly formed by coral-like structures of ZrO2, which showed huge difference with the continuous structure of ZrO2 on the surface layer. A kinetic model concerning the thickness change induced by volatilization and oxidation during ablation was built to explain the different growth mechanisms of the continuous ZrO2 scale and the coral-like ZrO2 structure.  相似文献   

6.
《Ceramics International》2016,42(3):4212-4220
To improve the oxidation protective ability of SiC–MoSi2–ZrB2 coating for carbon/carbon (C/C) composites, pre-oxidation treatment and pack cementation were applied to construct a buffer interface layer between C/C substrate and SiC–MoSi2–ZrB2 coating. The tensile strength increased from 2.29 to 3.35 MPa after pre-oxidation treatment, and the mass loss was only 1.91% after oxidation at 1500 °C for 30 h. Compared with the coated C/C composites without pre-oxidation treatment, after 18 thermal cycles from 1500 °C and room temperature, the mass loss was decreased by 30.6%. The improvements of oxidation resistance and mechanical property are primarily attributed to the formation of inlaid interface between the C/C substrate and SiC–MoSi2–ZrB2 coating.  相似文献   

7.
《Ceramics International》2016,42(12):14021-14027
Before the preparation of MoSi2–CrSi2–SiC–Si coating, blasting treatment of carbon/carbon (C/C) composites, as a surface modification method, was conducted under oxyacetylene torch. MoSi2–CrSi2–SiC–Si coating was prepared on the treated C/C composites by pack cementation, where an interlock interface was formed between the coating and the C/C substrate. After blasting treatment, the thermal expansion coefficient mismatch between the coating and C/C substrate was alleviated efficiently, and the bonding strength of the coating was increased by 45.6% and reached 26.2 MPa. To simulate the real working condition, thermal cycling test was conducted under oxyacetylene torch from 1600 °C to room temperature to construct an environment of combustion gas erosion. Due to the improvement of bonding strength and the alleviation of thermal expansion coefficient mismatch between the coating and the C/C substrate, thermal cycling performance of MoSi2–CrSi2–SiC–Si coating was enhanced. After 25 thermal cycles, the mass loss of the coated C/C composites without blasting treatment was up to 2.4%, and the C/C substrate was partially exposed. In contrast, the mass loss of the coated C/C composites with blasting treatment was only 1.1%.  相似文献   

8.
《Ceramics International》2016,42(4):4768-4774
In order to improve the ablation properties of carbon/carbon composites, HfC–SiC coating was deposited on the surface of SiC-coated C/C composites by supersonic atmospheric plasma spraying. The morphology and microstructure of HfC–SiC coating were characterized by SEM and XRD. The ablation resistance test was carried out by oxyacetylene torch. The results show that the structure of coating is dense and the as-prepared HfC–SiC coating can protect the C/C composites against ablation. After ablation for 30 s, the linear ablation rate and mass ablation rate of the coating are −0.44 μm/s and 0.18 mg/s, respectively. In the ablation center region, a Hf–Si–O compound oxide layer is generated on the surface of HfC–SiC coating, which is conducive to protecting the C/C composites from ablation. With the ablation time increasing to 60 s, the linear ablation rate and mass ablation rate are changed to −0.38 μm/s and 0.26 mg/s, respectively. Meanwhile, the thickness of the outer Hf–Si–O compound layer also increases.  相似文献   

9.
10.
To provide reliable oxidation protection for carbon materials under harsh high-temperature aerobic environments, a dense monolayer-multiphase ultra-high-temperature ceramic Ta0·5Zr0·5B2–Si–SiC (TZSS) coating was fabricated by a combination of dipping and in-situ reaction. The oxidation resistance of the TZSS coating was investigated at 1923 K in air. The results indicated that the TZSS coating could offer at least 70 h of oxidation protection for the matrix material. The synergistic oxygen-blocking effect of the thick oxide layer formed during the oxidation test and the inner coating, played a key role in the oxidation protection process. These were responsible for the excellent oxidation resistance ability of the TZSS coating. Additionally, the ablation performance of the TZSS coating was also investigated under increased heat flux from 2.4 MW/m2 to 4.2 MW/m2. The ablation behaviours changed from the oxidation and evaporation of coating materials to mechanical scouring, corresponding to increased mass and linear ablation rates. Interestingly, after ablation for 40 s under a heat flux of 4.2 MW/m2, a new microstructure composed of “lath-like” Ta4Zr11O32 solid solution grains was found in the ablation center. This oxide layer possessed few micropores, which could provide reliable protection for the matrix material under ultra-high-temperature oxygen-containing airflow erosion, thus preventing further damage to the composite.  相似文献   

11.
《Ceramics International》2022,48(6):8088-8096
The oxidation behavior and microstructure evolution of Lu2O3–SiC-HfB2 ceramic coating specimen at 1700 °C were investigated systematically by experimental study and first-principles simulation. The prepared ternary coating possesses a compact morphology, which effectively defends C/C substrate against oxidation at 1700 °C for 130 h, showing a good antioxidant property. The formed HfSiO4, Lu2Si2O7, and HfO2 with high melting points play an active role in developing the thermal stability of the oxidized scale. Besides, Lu and Hf atoms incline to diffuse into SiO2, which enhances its structural stability. The improved thermal property of the oxidized scale for the Lu2O3–SiC-HfB2/SiC ceramic coating can delay the effective delivery of oxygen inwardly and thus prolong its oxidation protection time. The quick volatilization of SiO2 at 1700 °C induces that some glass phase evaporates with being not completely stabilized, which causes the formation of holes and the consumption of the inner coating.  相似文献   

12.
Tao Feng  He-Jun Li  Qian-Gang Fu  Xi Yang  Heng Wu 《Carbon》2012,50(6):2171-2178
The high-temperature erosion resistance of multi-layer MoSi2–CrSi2–Si/SiC coated carbon/carbon (C/C) composites was investigated in a wind tunnel. To study the aerodynamic oxidation mechanism and analyze the failure of the coated C/C composites, the shear force and bending moment distribution of the tested specimens in a wind tunnel were calculated. Flexural strengths and thermogravimetric analysis of the coated specimens were measured. These results show that the multi-layer MoSi2–CrSi2–Si/SiC antioxidation coating can protect the C/C composites from high-temperature erosion in a wind tunnel at 1873 K for more than 86 h. Due to the high viscosity of SiO2, the multi-layer coating lacked effective oxidation resistance from 900 to 1500 K, resulting in extensive mechanical damage and the fracture of the tested specimens.  相似文献   

13.
In this study, near-fully dense ZrB2–SiC–VC (75-20-5 vol%) composite was manufactured through hot pressing at 1850°C under the pressure of 40 MPa for 60 min. Then the oxidation examination of the composite was carried out under different durations and temperatures. The microstructure and phase evolution after hot pressing and oxidation processes were examined by scanning electron microscopy, and X-ray diffractometry. The VC addition led to the formation of ZrC and VSi2 phases, which assisted the densification of the composite by removing ZrO2 from the particles’ surface. The oxides of ZrO2, SiO2, ZrSiO4, V2O5, and VO2 formed distinct layers on the sample during the oxidation at 1700°C for 4 h with a parabolic regimen and activation energy of 177.5 kJ/mol.  相似文献   

14.
This work summarises the influence of the original particle-size of the SiC powder on the mechanical properties of silicon infiltrated SiC (SiC-Si) composite. These composites are based on a defined SiC particle-size structure. Using α-SiC powders with a mean particle-size of 12·8, 6·4, 4·5 and 3 μm, a clear linear enhancement of the bending strength with decrease of SiC-particle-size was observed. However, a further decrease of the SiC particle-size (from 3 to 0·5 μm) brought no increase of the strength and toughness, respectively. ©  相似文献   

15.
The ablation/oxidation resistance of a carbon fibre (Cf)/carbon matrix (C)-SiC-TiC-TaC ceramic matrix composite (CMC) produced by melt infiltration of alloy into a Cf/C preform and tested in severely oxidising conditions was quantitatively determined and discussed. An oxyacetylene flame shot of 7.5 s (4 MW/m2 nominal heat flux), as well as oxidising conditions imposed by a radiant furnace in air at 1873 K up to 480 s were the selected testing conditions. Detailed post-test microstructure investigations of the oxidised/ablated infiltrated CMC samples, compared to unprotected CMCs tested in nominally identical conditions, enabled to establish an increase in ablation/oxidation resistance of one order of magnitude. The occurrence of a self-generating protective high-temperature glass-ceramic, disclosed by microstructure analyses, played a substantial role for that performance jump during oxidation/ablation. The Cf/C-SiC-TiC-TaC composite herein tested can be a valuable candidate for uses in severe aerospace applications (propulsion and hypersonic flight).  相似文献   

16.
《Ceramics International》2017,43(13):9934-9940
Continuous silicon carbide fiber–reinforced silicon carbide matrix (SiCf/SiC) composites have developed into a promising candidate for structural materials for high–temperature applications in aerospace engine systems. This is due to their advantageous properties, such as low density, high hardness and strength, and excellent high temperature and oxidation resistance. In this study, SiCf/SiC composites were fabricated via polymer infiltration and pyrolysis (PIP) with the lower–oxygen–content KD–II SiC fiber as the reinforcement; a mixture of 2,4,6,8–tetravinyl–2,4,6,8–tetramethylcyclotetrasiloxane (V4) and liquid polycarbosilane (LPCS), known as LPVCS, was used as the precursor; while pyrolytic carbon (PyC) was used as the interface. The effects of oxidation treatment at different temperatures on morphology, structure, composition, and mechanical properties of the KD–II SiC fibers, SiC matrix from LPVCS precursor conversion, and SiCf/SiC composites were comprehensively investigated. The results revealed that the oxidation treatment greatly impacted the mechanical properties of the SiC fiber, thereby significantly influencing the mechanical properties of the SiCf/SiC composite. After oxidation at 1300 °C for 1 h, the strength retention rates of the fiber and composite were 41% and 49%, respectively. In terms of the phase structure, oxidation treatment had little effect on the SiC fiber, while greatly influencing the SiC matrix. A weak peak corresponding to silica (SiO2) appeared after high–temperature treatment of the fiber; however, oxidation treatment of the matrix led to the appearance of a very strong diffraction peak that corresponds to SiO2. The analysis of the morphology and composition indicated cracking of the fiber surface after oxidation treatment, which was increasingly obvious with the increase in the oxidation treatment temperature. The elemental composition of the fiber surface changed significantly, with drastically decreased carbon element content and sharply increased oxygen element content.  相似文献   

17.
《Ceramics International》2019,45(13):16046-16053
In this study, TiO2W addition improved the oxidation resistance of the Mo–Si–B composite at 1300 °C. The TiO2 partially dissolved in SiO2 modified the network structure of the SiO2 glass and improved its fluidity at the initial oxidation stage. This favored to a continuous scale cover on the surface of the Mo–Si–B composite rapidly. The residual TiO2W promoted the formation of a passivated multilayer borosilicate scale at current temperature, which could impede the MoO3 volatilisation and O diffusion at the stable oxidation stage. The SiCW addition, compared to the TiO2W, especially could ensure the Mo–Si–B–SiC composite withstand a higher temperature such as 1400 °C. Its oxidation and the more intermetallics in the composite could increase the number of active sites of the SiO2 glass, thereby supplying the borosilicate scale with a relatively sufficient Si element. Thus, the transient oxidation stage was minimised and the initial mass loss was reduced, which indicated a continuous borosilicate scale had formed quickly at the initial stage. Finally, the improved viscosity of the borosilicate due to a lower B/Si ratio, could obviously decreased the oxygen diffusion and enabled the formation of a protective borosilicate layer at or above 1400 °C.  相似文献   

18.
Porous multidirectional carbon/carbon composite obtained by pulse chemical vapour infiltration (PCVI) was impregnated with silicon carbide (SiC) derived from pyrolysis of polymethylsiloxane resin (PMS). The impregnation process was made to improve oxidation resistance and mechanical properties of MD C/C composite. The resin was used as a source of silicon carbide component of the composite forming after heat treatment above 1000 °C. During this process SiC thin filaments were formed inside the porous carbon phase. The aim of this work was to investigate the structure and microstructure of the constituents of carbon composite obtained after pyrolysis of SiC PMS precursor. Microscopic observations revealed that during careful heat treatment of crosslinked polymethylsiloxane resin up to 1700 °C, the filaments (diameter 200–400 nm) crystallized within porous carbon phase. The filaments were randomly oriented on the composite surface and inside the pores. FTIR spectra and XRD analysis of the modified C/C composite showed that filaments had silicon carbide structure with the crystallite size of silicon carbide phase of about 45 nm. The Raman spectra revealed that the composite contains two carbon components distinctly differing in their structural order, and SiC filaments present nanocrystalline structure.  相似文献   

19.
A novel cristobalite aluminum phosphate particle (c-AlPO4) modified SiC whisker toughened mullite coating (c-AlPO4-SiCw-mullite) was prepared on SiC coated carbon fiber reinforced SiC composites (C/SiC) by a new sol-gel method combined with air spraying to improve the oxidation resistance of SiCw-mullite coating. Results show that c-AlPO4-SiCw-mullite coatings with 10 and 20 wt.% of c-AlPO4 exhibited obviously improved oxidation resistance at 1773 K in ambient air for 100 h than SiCw-mullite coating. Moreover, the oxidation resistance of c-AlPO4-SiCw-mullite coatings were rapidly declined when the c-AlPO4 in c-AlPO4-SiCw-mullite coating were set to 30 and 40 wt.%. The c-AlPO4-SiCw-mullite coating with 20 wt.% of c-AlPO4 showed most pronounced oxidation resistance, the weight loss rate after the oxidation in ambient air for 210 h was merely 3.00 × 10?5 g·cm?2 h?1. The failure of c-AlPO4-SiCw-mullite coating with 20 wt.% of c-AlPO4 was due to the generation of penetrative micro-cracks and micro-holes in the coating, which cannot be self-healed by the silicate glass layer after long time oxidation at 1773 K.  相似文献   

20.
《应用陶瓷进展》2013,112(7):387-394
ABSTRACT

Carbon fibres (CF) have been used in various fields because of their unique properties. However, the oxidation resistance ability of CF is not good enough. The paper discusses the issue of using composite plating method to deposit SiC–MoSi2–ZrO2 coating at the surface of CF. The plating factors, including nanoparticle concentration, plating bath temperature, current density, agitation rate and electroplating time, which affect the structure and performance of coating have been discussed. The energy dispersive spectrometer has been applied to test the mass fraction of nanoparticles in the coating. Also, the surface morphology of coated CF has been characterised by a scanning electron microscope and the antioxidation ability of each sample has been tested by the weight difference method. The results indicate that with the proper plating factors, the coating can improve the antioxidation performance of CF and its reinforced composites. The residual weight of coated CF is over 52% after 1400°C oxidation for 15?min.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号