首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
糠醇是重要的有机化工原料,用途广泛。现行糠醛催化加氢制备糠醇的技术存在氢耗大、成本高等缺点。本文提出了一种在近临界异丙醇中,Cu-Pd/Al_2O_3催化糠醛转移氢化制备糠醇的方法。采用共沉淀法制备了不同Cu、Pd负载量的Cu-Pd/Al_2O_3催化剂,并进行了XRD、氮气吸脱附表征。考察了催化剂中Cu-Pd的负载量、催化剂用量、糠醛浓度、反应温度和反应时间对反应的影响。结果表明:18%Cu-2%Pd/Al_2O_3双金属催化剂对糠醛催化转移氢化反应效果最好;在18%Cu-2%Pd/Al_2O_3催化剂作用下,反应温度为190℃、反应时间为3h时,糠醛转化率为100%、糠醇收率达到86.4%;催化剂重复使用四次后依然保持良好的活性。本文提出的方法具有非临氢、糠醇收率高、催化剂重复使用性能好等优点。  相似文献   

2.
苯乙烯-丁二烯-苯乙烯嵌段共聚物(SBS)选择性催化加氢是保留链段中苯环不被加氢而C C双键选择性加氢,从而得到具有更优异性能的高附加值氢化产物SEBS。为了消除反应物大分子孔内扩散限制问题,采用胶体SiO2亚微米球为模板,通过氰胺热缩合成功合成了三维有序超大孔氮化碳(3DOM g-C3N4),以其为载体采用化学还原负载法得到了具有超大孔结构的Pd/3DOM g-C3N4催化剂,并将其用于SBS的选择性催化加氢反应。结果表明,Pd/3DOM g-C3N4催化剂具有超大孔-大孔-介孔多级孔三维贯穿结构且Pd颗粒尺寸小、分散均匀,该催化剂在较为温和的反应条件下,即表现出极为优异的加氢活性和选择性。根据红外表征计算得到其对SBS的1,2-C C和1,4-C C总加氢度达到98%,而对苯环没有加氢,选择性为100%。其优异的催化性能主要归功于载体独特的超大孔-大孔-介孔多级孔三维贯穿结构可以有效消除大分子在孔隙中的扩散限制,从而提高了对活性位...  相似文献   

3.
本文选用Ru/C、Ru/Al2O3、Pd/C、Pd/Al2O3、Pt/C、雷尼镍等催化剂用于糠醇加氢的釜式反应研究。研究发现,Ru/C催化剂在糠醇加氢制备四氢糠醇的反应中具有良好的反应性能。研究了在Ru/C催化剂作用下溶剂、反应温度、氢气压力、反应时间、催化剂的用量等因素对反应的影响,并对工艺条件进行了优化。得到最佳工艺条件:异丙醇作溶剂,反应温度为60℃、氢气压力为3 MPa、反应时间为6 h,原料与催化剂的质量比为20:1,糠醇的转化率达到100%,四氢糠醇的选择性大于95%。  相似文献   

4.
以三聚氰胺为原始材料,以水热和煅烧法制备的石墨相氮化碳(g-C3N4)为载体,采用沉淀法构建了氮化碳复合碘氧化铋(BiOI)纳米级复合催化剂。考察了BiOI负载量、表面活性物质的种类和用量对复合催化剂吸附和光催化降解罗丹明B的影响,并对催化剂进行了表征。结果表明,当BiOI质量分数为66%、使用18.75 g/m L的非离子型高分子表面活性剂聚乙烯吡咯烷酮(PVP)时,所制得的催化剂带隙适宜,粒径适中,且主要含有BiOI(102)晶面,吸附和降解效果最佳,对Rh B的降解率可达到98.4%。该复合材料在重复使用5次后降解率仍然可以达到87.1%。此外,BiOI/g-C3N4催化降解15 mg/L的RhB溶液的反应符合一级动力学方程,其速率常数为0.161 8 min-1。  相似文献   

5.
采用高温聚合有机物前驱体的方法,以三聚氰胺为前驱体,制得类石墨型氮化碳(g-C3N4)粉末,采用水热法制得CeO2/g-C3N4复合光催化剂,对其进行了表征,考察了CeO2/g-C3N4复合光催化剂在可见光下处理亚甲基蓝的性能,并对CeO2/g-C3N4复合光催化剂进行回收实验、吸附实验以及光催化动力学分析。结果表明,CeO2/g-C3N4中g-C3N4和CeO2分别为石墨相和萤石相,复合CeO2使得g-C3N4的吸附性能有了大的提高,15 min能达到吸附平衡,吸附82.5%的亚甲基蓝;45 min后对亚甲基蓝处理率达到99.45%,远远快于g-C3N4。CeO2/g-C3N4在5次使用后仍然可以保持73.1%的净化效果。亚甲基蓝处理过程包括吸附和光解2部分,光解反应符合一级动力学方程。  相似文献   

6.
以P掺杂的石墨相氮化碳(P-C3N4)为基材,将其与不同质量分数的氯化铜混合后继续焙烧,制备出Cu-P复合改性的石墨相氮化碳可见光光催化剂(Cu/P-C3N4)。对样品的结构、光电性能进行了X射线衍射(XRD)、能谱(EDS)、傅里叶变换红外光谱(FT-IR)、光致荧光光谱(PL)、电化学阻抗谱(EIS)等一系列表征。通过可见光催化降解亚甲基蓝考察了它们的光催化活性。结果表明,Cu-P复合改性提高了催化剂的电子转移速率且降低了光生电子空穴对的复合速率,有效改善了其光催化性能。可见光照射120 min,Cu(1.5%)/P-C3N4复合材料对亚甲基蓝的降解率达到71.3%,其降解速率常数分别是纯g-C3N4和P-C3N4的2.17倍和2倍。另外,通过活性物种捕获实验初步研究了各个体系的光催化反应机理。  相似文献   

7.
以三聚氰胺为前驱物采用热聚合法制备了石墨相氮化碳(g-C3N4),并在其表面原位合成了碘氧化铋(BiOI),构筑了石墨相氮化碳-碘氧化铋复合材料。采用X射线衍射仪(XRD)、傅里叶变换红外光谱仪(FT-IR)、紫外可见漫反射仪(UV-Vis-DRS)等对催化剂进行了表征。结果表明,当BiOI与g-C3N4物质的量比为0.5时,BiOI/g-C3N4催化剂具有高分散的BiOI颗粒及适中的禁带宽度,吸附和降解甲基橙性能最佳。回流温度为120 ℃时制备的BiOI/g-C3N4催化剂具有适中的粒径、比表面积和表面羟基浓度,吸附和降解甲基橙性能最佳,且该催化剂具有良好的重复使用性能。  相似文献   

8.
针对石墨相氮化碳(g-C3N4)比表面积小、光生载流子复合快和可见光利用效率低等缺点,阐述了g-C3N4的改性方法,包括形貌调整、离子掺杂、半导体复合,旨在增大比表面积,加快电子-空穴对的分离,拓宽可见光响应范围;同时讨论了相应的改性方法对光催化性能的影响,从而达到提高光催化性能的目的;对g-C3N4的未来发展趋势进行了展望。  相似文献   

9.
以高温煅烧硝酸银预修饰的三聚氰胺为前驱体得到银掺杂氮化碳(AgxC3N4,x为硝酸银质量占三聚氰胺质量的百分数,下同)载体,并采用浸渍还原法制备了AgxC3N4负载Pd催化剂(AgxC3N4-Pd),考察其对甲酸制氢反应的催化活性。采用XRD、TEM、EDS和XPS对载体及催化剂的活性组分进行了表征与测定。结果表明,高温煅烧硝酸银预修饰的三聚氰胺前驱体可以实现银物种直接掺杂入氮化碳体相,银的引入改变了氮化碳载体的晶相结构和微观形貌。AgxC3N4-Pd在甲酸分解制氢中展现了良好的催化活性,Ag3%C3N4-Pd在323 K甲酸分解转换频率(TOF值)可达991 h–1,明显高于未经银掺杂氮化碳负载的C3N4<...  相似文献   

10.
以H3PW6Mo6O40/TiO2-WO3为催化剂,苯甲醛和1,2-丙二醇为原料合成了苯甲醛1,2-丙二醇缩醛,用正交实验法研究了物料配比、催化剂用量、带水剂用量、反应时间等因素对收率的影响。结果表明,在n(苯甲醛):n(1,2-丙二醇)=1:1.3,催化剂用量为反应物料总质量的1.2%,带水剂环己烷6mL,反应时间75min的优化条件下,苯甲醛1.2-丙二醇缩醛的收率可达79.1%。  相似文献   

11.
以KCl、Bi(NO33和类石墨氮化碳(g-C3N4)为前体,采用水热法成功制备了BiOCl/g-C3N4异质结光催化剂,并进行可见光催化还原CO2,考察了催化剂的活性及稳定性,同时研究BiOCl:g-C3N4(摩尔比)、催化剂用量和光照强度对光催化还原CO2的影响。结果表明,在水蒸气的存在下,BiOCl/g-C3N4较纯BiOCl和g-C3N4具有更高的光催化还原CO2活性,在催化剂用量为0.1 g,光照强度为2.413×10-6 einstein·min-1·cm-2,BiOCl:g-C3N4摩尔比为1:1的异质结催化剂显示了最高的光催化还原CO2活性,且可见光催化剂在5次套用实验后其活性基本不变。基于X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线光电子能谱(XPS)、比表面积测试(BET)和紫外-可见(UV-vis)吸收光谱表征,可以推断BiOCl和g-C3N4之间形成的p-n结能有效分离光生电子和空穴,是增强光催化剂活性的主要原因。  相似文献   

12.
以H3PW12O40/ZrO2-WO3为催化剂,丙酸和正丁醇为原料合成丙酸正丁酯。探讨H3PW12O40/ZrO2-WO3对缩醛酯化反应的催化活性,较系统地研究了酸醇物质的量比、催化剂用量、反应时间等因素对产物收率的影响,实验表明:H3PW12O40/ZrO2-WO3是合成丙酸正丁酯的良好催化剂;在n(丙酸):n(正丁醇)=1:1.4,催化剂用量占反应物量总质量的1.5%,环己烷为带水剂6ml,反应时间45min的最佳条件下,丙酸正丁酯的收率可达85.9%。  相似文献   

13.
张健  翁森  石俊杰  蔡静宇  肖龙强 《精细化工》2024,(4):858-864+871
以石墨相氮化碳(g-C3N4)和二水合钨酸钠为原料,采用水热合成法制备了复合材料g-C3N4/WO3·H2O(CNW-1),通过XRD、XPS、SEM、TEM对其进行了表征,探究了298 K、0.1 MPa条件下其对CO2的可见光催化还原性能,并提出了可能的反应机理。通过调控WO3结晶水含量可以实现CO和CH4的产率调节,在反应10 h后,CNW-1具有最高的CH4产率(0.33μmol/g),而g-C3N4/WO3(CNW)具有最高的CO产率(0.67μmol/g)。该研究为CO2选择性还原为C1化合物提供了一种有效策略,同时突出了以g-C3N4作为半导体构建Z型光催化体系在催化领域的应用潜力。  相似文献   

14.
以苯甲醛和乙二醇为原料,以H3PW12O40/TiO2-SiO2为催化剂,合成了苯甲醛乙二醇缩醛,考察了醛醇摩尔比、反应时间、催化剂用量及带水剂环己烷用量等因素对收率的影响。实验结果表明:H3PW12O40/TiO2-SiO2是合成苯甲醛乙二醇缩醛的优良催化剂,在固定苯甲醛为0.2mol,n(苯甲醛):n(乙二醇)=1.0:1.6,催化剂的用量占反应物料总质量的0.6%,带水剂环己烷用量为10 mL,回流反应30 min的优化条件下,苯甲醛乙二醇缩醛收率可达81.1%。  相似文献   

15.
石墨相碳化氮(g-C3N4)因带隙窄、电子结构独特、稳定性高、廉易得等优点成为光催化领域的研究热点。然而,原始氮化碳往往存在比表面积小、光响应范围窄、电子-空穴易复合等缺点。特殊结构 g-C3N4具有多级结构,可以调节载流子迁移路径,是显著提高 g-C3N4比表面积、改善其电子结构,促进电荷分离的有效手段。本文综述了不同结构和形貌的 g-C3N4及其复合体系的研究进展,并对不同形貌 g-C3N4的构效关系进行了分析,展望了未来 g-C3N4的研究方向和应用前景。  相似文献   

16.
以HY分子筛为载体,采用水热法合成了系列Co3O4/HY复合分子筛催化剂,通过XRD、SEM、EDS、FT-IR、BET等手段对Co3O4/HY进行表征,并对Co3O4/HY分子筛催化氧气液相氧化苯甲醇合成苯甲醛的性能进行研究。结果表明,Co3O4的引入未破坏分子筛的骨架结构,且Co3O4在HY晶体表面形成片层蜂窝状多孔结构,可有效增加催化剂样品的介孔孔容和外表面积,增加催化活性。但Co3O4负载过量易出现堆叠现象,使得介孔孔容和外表面积降低,不利于氧化反应进行。以1.0-Co3O4/HY为催化剂,在适宜的反应条件下苯甲醇的转化率和苯甲醛的选择性分别达到73.2%和95.8%;催化剂重复使用5次,依然表现出较好的催化活性。  相似文献   

17.
以二氧化钛负载磷钨钼酸H3PW6Mo6O40/TiO2-WO3为催化剂,环己酮和1,2-丙二醇为原料合成环己酮1,2-丙二醇缩酮。探讨H3PW6Mo6O40/TiO2-WO3为对缩酮反应的催化活性,较系统地研究了酮醇物质的量比、催化剂用量、带水剂用量、反应时间等因素对产物收率的影响。实验表明:H3PW6Mo6O40/TiO2-WO3为是合成环己酮1,2-丙二醇缩酮的良好催化剂,在固定环己酮的物质量为0.2mol,n(环己酮):n(1,2-丙二醇)=1:1.3,催化剂的用量占反应物料总质量的1.2%,带水剂环己烷的用量为6mL,反应时间45min的适宜条件下,环己酮1,2-丙二酵缩酮的收率可达88.5%。  相似文献   

18.
石墨相氮化碳(g-C3N4)禁带宽度约为2.7 eV,具有可见光响应能力。由于其良好的热和化学稳定性,且形貌和化学结构可调,在光催化领域应用广泛。但由于其带隙宽,对可见光响应范围窄,且光生载流子的复合率高,导致其光催化效率低,可通过改性来改善。本文综述了对g-C3N4形貌调控、掺杂和构建异质结等改性策略,以及g-C3N4/Ti3C2异质结的作用机理、制备方法和在光催化析氢、有机物降解及合成等领域的应用。  相似文献   

19.
采用化学还原法制备了CoNiB非晶态合金催化剂,并用于糠醛液相加氢制糠醇反应。考察了Ni/Co摩尔比,NaBH4滴加速率等催化剂制备条件对催化性能的影响,以及反应压力、反应时间、反应温度等反应条件对糠醛转化率和糠醇选择性的影响。结果表明:最佳的催化剂制备条件是Ni/Co摩尔比为5/5,NaBH4滴加速率为2.6mL·min-1;最佳的反应条件为反应压力2MPa,反应时间3h,反应温度80℃。在此条件下糠醛的转化率为46.2%,糠醇的选择性为90.4%。  相似文献   

20.
开发生物基平台化合物糠醛向1,5-戊二醇转化的绿色合成路线是减少人们对化石燃料依赖的有效途径。本工作设计制备了Pd-MoO3/TiO2双功能催化剂,通过N2物理吸脱附,X射线光电子能谱(XPS),透射电镜(TEM)对其进行表征分析。对催化剂活性组分及载体进行筛选,优选出了Mo/Pd物质的量之比为1.5的催化剂,并对糠醛氢解反应路径进行了探究。实验结果表明,在150℃和H2压力为3MPa的条件下,糠醛在2 h内可以完全转化,1,5-戊二醇的收率可以达到56%,催化剂重复使用5次活性无明显下降,稳定性良好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号