首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
针对高速列车油液单向流动式抗蛇行减振器,考虑其节点和油液刚度、活塞质量、流量泄漏等问题,采用静态试验获得阻尼阀卸荷特性,根据油液的压力流量方程建立减振器非线性动态模型,通过数值仿真和试验比较了减振器在不同激扰幅值和频率下的阻尼力、动态刚度和动态阻尼,误差均在5%以内;研究了减振器静态阻尼力-速度曲线与动态刚度、动态阻尼之间的关系。实验结果表明:减振器静态阻尼曲线在卸荷点之前的非线性对动态参数影响显著,激励幅值越小影响越大;保持卸荷点前后阻尼不变,增大卸荷速度能提高大激扰幅值和高激扰频率下的动态刚度和动态阻尼;固定卸荷速度、增大卸荷力,动态刚度和动态阻尼均增大。  相似文献   

2.
建立了减振器力学特性试验台。针对某高速动车组抗蛇行液压减振器,进行了静态及动态特性试验。分析不同激励幅值、不同激励频率对抗蛇行减振器动态性能的影响,得到了减振器的静态特性、动态刚度和阻尼特性。试验结果表明:动态刚度在低频时随频率增加而增加,频率高于某个值后,动态刚度趋于平稳;动态阻尼在低频时随频率增加而增加,高频时随频率增大而减小,而随幅值的增加,动态阻尼峰值所对应的频率减小。  相似文献   

3.
为了提高车辆动力学计算机仿真精度,研究抗蛇行减振器力学模型及其对车辆动力学性能的影响,基于可压缩流体的压力?流量特性建立了我国某高速动车组抗蛇行减振器非线性力学模型,并对其进行了试验和动力学仿真分析。结果表明:相比传统分段线性模型,抗蛇行减振器非线性力学模型能够同时体现黏性阻尼力和油液被压缩而产生的回复力,仿真计算结果与试验结果吻合良好;基于抗蛇行减振器非线性力学模型计算的临界速度会随踏面等效锥度的增加而先增大后减小,计算的横向平稳性指标较高,且随速度增加而增加的趋势更显著。研究表明,抗蛇行减振器非线性力学模型能够有效提高动力学仿真精度,对车辆的蛇行运动稳定性和横向平稳性有较大影响,但对垂向平稳性和曲线通过安全性的影响较小。  相似文献   

4.
分析了新、旧抗蛇行减振器以及抗蛇行减振器在不同安装长度时的动态特性与静态特性。研究结果表明:抗蛇行减振器在服役120万公里后,其静态特性变化不是很明显。其动态阻尼、动态刚度下降相对较明显,动态阻尼下降约为10%,动态刚度下降约为15%。随着幅值的增加,动态阻尼、动态刚度减小率均逐渐减小,动态刚度减小率没有动态阻尼变化明显。抗蛇行减振器不同安装长度时静态特性没有太大变化,动态刚度、动态阻尼随着安装长度的增加总体呈减小趋势,减振器安装长度每增加40 mm,动态刚度平均约减小5%~7%,动态阻尼平均减小约为2%~8%。因为它们静态特性都没有明显变化,故不能再根据Maxwell模型来分析其对车辆动力学性能影响,体现了Maxwell模型局限性。  相似文献   

5.
基于Maxwell模型推导出二系横向减振器和抗蛇行减振器的动态刚度和阻尼等非线性特性,对其分别进行温变特性和动静态特性试验,并基于车辆动力学仿真得出抗蛇行减振器参数对蛇行运动稳定性和运行平稳性的影响规律.结果表明:温变特性试验中的示功图、阻尼偏差率等数据验证了减振器基本参数符合设计要求;减振器动态特性与加载频率和位移幅值相关.针对某高速列车,提高抗蛇行减振器串联刚度或提高其卸荷力,可改善构架蛇行运动稳定性和行车的平稳性、舒适性,但提高其卸荷速度却起到反作用,一般需要取最优值范围.  相似文献   

6.
《机械》2015,(7)
分析了广泛应用于动车组车辆上的抗蛇行减振器的工作原理,将抗蛇行减振器的力学特征抽象为弹簧、阻尼单元,在Maxwell等效参数模型的基础上,考虑抗蛇行减振器油液阻尼的分段特性,同时考虑橡胶节点刚度和油液刚度,建立液压减振器的分段线性模型。在此基础上,求解抗蛇行减振器的动态阻尼与动态刚度。同时,针对应用在动车组上的某抗蛇行减振器进行动态特性试验,得到减振器的动态阻尼和动态刚度曲线。最后,将分段线性模型的计算结果与两种线性阻尼的Maxwell模型计算结果、试验结果进行对比,验证了模型的准确性。  相似文献   

7.
为了研究抗蛇行减振器油液温度对其动态特性和整车动力学性能的影响,对我国某高速动车组抗蛇行减振器进行了试验和动力学仿真分析。试验结果表明,在油液正常工作温度范围内,减振器吸收的能量、减振器动态阻尼及动态刚度随油液温度的降低而增加;而当油液温度超出抗蛇行减振器油液正常工作范围时,减振器吸收的能量、减振器动态阻尼及动态刚度随油液温度降低而降低。仿真结果表明,在油液正常工作温度范围内,蛇行临界速度随油液温度的降低而增大,而当油液温度超出正常工作温度范围时,蛇行临界速度随温度降低而降低,油液温度对车辆平稳性、安全性影响并不明显。  相似文献   

8.
外界环境温度对减振器油液的黏性有一定的影响,从而对减振器动态特性及车辆动力学性能造成影响.以我国某动车组用抗蛇行减振器为例,对减振器油液温度及其动态及静态性能展开了研究.首先对蛇行减振器结构、工作原理及黏温特性进行了理论分析,再对抗蛇行减振器进行了台架试验认证.研究表明,油液温度对油液的黏性影响很大,进而影响了减振器的动态特性.且随着油液温度升高,减振器吸收的能量越来减少,而其总体动态特性随着温升也有所减小.低温对减振器的影响要远远大于高温,这是由于油液的黏度随着温度升高而减小,且低温对油液黏度的影响大于高温引起的.  相似文献   

9.
基于台架试验分析了油液温度对抗蛇行减振器动态特性影响(即温变特性),并模拟分析了抗蛇行减振器在实际工作服役过程中动态特性变化情况(即时域特性),借助于SIMPACK软件对抗蛇行减振器油液温度对车辆安全性影响进行了仿真分析。研究结果表明:随着油液温度升高,减振器吸收的能量、动态刚度和动态阻尼均减小,油液温度对相位角影响不明显;低温(小于0℃)对减振器吸收的能量、动态刚度和动态阻尼影响大于高温(大于0℃)对其影响。不论是低温还是常温,抗蛇行减振器在模拟时间5 h内,其动态特性变化不是很大。仿真结果表明抗蛇行减振器内部油液温度变化不会影响行车安全。  相似文献   

10.
为评价新开发的某型号双筒液压减振器的动态特性,运用MTS减振器综合性能测试示功机对其进行动态特性试验,得到其位移特性和速度特性曲线。结果表明,位移特性曲线可以反映该减振器阻尼力特性,速度特性曲线可以反映该减振器速度特性。基于位移特性曲线和减振器速度特性曲线评价常温20℃下该减振器的动态性能,结果表明,当减振器运行到1/4周期时,阻尼力和活塞杆速度达到复原过程最大值,而位移处于减振器的中心位置;减振器运行到2/4周期时,阻尼力和活塞杆速度值接近于0,而位移达到最大值50 mm;减振器运行到3/4周期时,阻尼力和活塞杆速度达到压缩过程最大值,而位移处于减振器的中心位置;当减振器运行完一个周期时,阻尼力和活塞杆速度值接近于0,而位移达到最小值-50 mm。研究表明,该型号减振器动态特性比较稳定,但在路面有较大冲击情况下位移会超出其工作行程±50 mm,因此应增加减振器工作行程以适应复杂的路面工况。  相似文献   

11.
建立较为精确的磁流变减振器阻尼力模型是设计控制策略并获得良好控制效果的关键。基于流体动力学理论和磁流变液流变特性,对阻尼通道内磁流变液进行流体动力学分析,详细推导磁流变减振器阻尼力模型。结合阻尼通道处磁场有限元分析,完善阻尼力模型。最后试验测试自制磁流变减振器在不同励磁电流和不同活塞速度下的示功特性和速度特性,利用试验数据对模型进行系数辨识,建立磁流变减振器简化力学模型。研究结果表明,励磁电流小于0.8 A时,输出阻尼力试验值与计算值较吻合,当励磁电流增大,阻尼力试验值与计算值最大相差约100 N,计算值相对于试验值的误差在19%以内,该简化力学模型能描述磁流变减振器的基本力学特性,能为半主动悬架控制研究提供理论指导。  相似文献   

12.
减振器的主要功能是提供阻尼力以衰减和抑制车辆系统振动,对高速动车组动力性能有十分重要的影响。既有研究主要将减振器处理为阻尼力以研究车辆系统动力性能,极少从动力学和结构可靠性角度关注减振器自身承受的载荷。制作某型高速动车组转向架抗蛇行减振器、轴箱减振器、二系横向和垂向减振器测力元件,在大同-西安高速线路上测试并获得该型动车组运行过程中四种减振器载荷引起的应变信号。对测试数据进行处理和分析,获得高速动车组运行工况下四种减振器载荷的时间历程,分析减振器载荷的时域和频域特征。采用雨流计数法统计减振器载荷峰谷值和频次,获得不同速度等级下载荷分布。结果表明,高速动车组抗蛇行减振器载荷最大、二系横向减振器载荷最小。轴箱减振器相对速度最大、二系横向减振器相对速度最小。减振器载荷总体上呈正态分布,而且一般有列车运行速度越高减振器载荷越大。列车正线行驶时曲线半径对轴箱减振器、二系垂向减振器以及二系横向减振器载荷影响不明显,列车速度和线路小半径曲线对抗蛇行减振器载荷影响明显。  相似文献   

13.
邵俊捷  雷蕾  胡泽耀 《机械强度》2022,44(2):468-473
抗蛇行减振器是高速列车悬挂系统中的关键零部件.通过抗蛇行减振器的实测性能退化数据和抗蛇行减振器的设定阻尼值,获取到不同性能状态的抗蛇行减振器性能数据.根据我国某型主力高速列车的动力学参数,建立车辆的动力学模型,结合不同性能状态的抗蛇行减振器性能数据,分析其对车辆动力学性能的影响.结果表明:在实际运行时,抗蛇行减振器的性...  相似文献   

14.
为了研究低温状态下高速动车组的蛇行稳定性,对我国某高速动车组的转臂定位节点和抗蛇行减振器分别进行了试验和仿真分析。试验结果表明,在正常工作温度范围内,温度越低,转臂定位节点的动态刚度与动态阻尼越大。在-50~20℃范围内,随着温度的降低,抗蛇行减振器动态刚度逐渐增加,温度越低,减振器动态刚度变化越明显;卸荷速度前,温度越低,动态阻尼越大;卸荷速度后,温度越低,动态阻尼越小;温度越低,动态阻尼变化越显著。仿真结果表明,随着温度的降低,车辆运行的蛇行临界速度先增大后减小,但是始终高于设计时速,说明温度的变化不会使列车失稳。  相似文献   

15.
磁流体阻尼可调减振器   总被引:11,自引:1,他引:11  
磁流体减振器作为一种阻尼力可调减振器,具有反应时间迅速,能适用于振动系统实时控制等特点。在分析了磁流体减振器阻尼力特性的基础上,提出了磁流体减振器的非线性模型;试验验证了磁流体减振器作为阻尼可调减振器的减振性能。结果表明提出的非线性模型更能反映磁流体减振器的阻尼力特性;磁流体减振器能满足振动系统的不同阻尼的要求。  相似文献   

16.
探究一种温度效应对磁流变减振器(MRD)阻尼动力学性能的影响规律。基于Bingham力学模型和磁路等效原理,建立MRD样机的参数化模型,利用ANSYS仿真研究温度对MRD阻尼力特性、可调系数和响应时间的影响机理和规律;搭建MRD温度-动力学测控试验平台,开展不同输入电流、激振频率和振幅下温度效应对MRD动力学性能影响的试验,分析研究阻尼力-位移特性、可调系数及响应时间的动态变化规律。结果表明:温度对阻尼力和响应时间的影响呈负相关,对可调系数的影响呈正相关,仿真与试验结果保持一致。研究结果对MRD的温度补偿设计和性能优化具有参考价值。  相似文献   

17.
分析了油液温度对抗蛇行减振器动态特性的影响,比较了不同油液类型不同温度时对减振器动态特性的影响,并对抗蛇行减振器在工作过程中油液温变特性进行了研究。结果表明:随着油液温度的降低,减振器吸收的能量、动态阻尼和动态刚度越来越越大,低温时油液温度对减振器动态特性影响大于高温时。不同油液类型对抗蛇行减振器动态特性影响非常大,A油液对温度敏感程度大于B油液;不论低温还是常温,减振器连续不断工作,短时间(140min)内温度有所上升,但由于散热快,上升都不是很大,温度随时间呈斜率增加式非线性增加,即温度上升越来越快。  相似文献   

18.
为了获得磁流变减振器便于控制的精确力学模型,在正弦激励下对磁流变减振器进行了特性试验,利用试验数据拟合了一种滞回模型,以此来表示磁流变减振器的动态响应特性,比较由此模型仿真和实测的阻尼力,表明此模型既能较好地描述其滞回特征,亦能简单明了地表达逆向动态特性,可在开环控制策略下容易地获得理想的阻尼力,利用此模型设计了一个开环控制策略下的模糊控制器,比较所设计的模糊控制器和天棚控制器及被动悬架的性能,采用四分之一悬架模型采进行分析和仿真,随机路面激励下的数值仿真进一步证实了此控制器的有效性,其综合性能比天棚控制和被动悬架均有较大幅度的提高.  相似文献   

19.
车辆单筒充气磁流变减振器的阻尼力数学模型及试验仿真   总被引:2,自引:0,他引:2  
介绍一种车辆单筒充气磁流变减振器的结构和工作原理,其内部的磁流变液材料是一种新型的智能材料,其流变特性可随所加载磁场强度的变化而变化,并且这一过程是可逆的,用磁流变液制成的减振器具有体积小、阻尼力大、动态范围广和频响高等优点。研究利用磁流变液的非牛顿宾汉流体模型和流体运动微分方程,建立反映单筒充气磁流变减振器阻尼力特性的数学模型;对单筒充气磁流变减振器进行台架试验,得到不同电流的减振器示功特性图;通过试验测得磁流变减振器的仿真参数,然后在Matlab软件环境下完成阻尼力数学模型的仿真;试验的示功特性与数学模型仿真进行分析比较,结果表明仿真数据与试验数据较吻合,验证了建立的单筒充气阻尼力数学模型的正确性。  相似文献   

20.
针对油液泄漏导致的减振器失效问题,以某国产液压减振器为研究对象,通过分析其结构以及工作原理,建立减振器阻尼力的数学表达式以及AMESim一维仿真模型,仿真得到其不同速度下的示功图以及阻尼特性曲线,并与试验结果进行对比,仿真结果与试验结果能够较好的吻合,表明用AMESim所建立的一维仿真模型真实可靠。基于该仿真模型仿真活塞缝隙、底阀、活塞杆与密封圈缝隙的油液泄漏而导致的减振器失效问题,对比不同状态下的阻尼特性曲线,发现仿真模型可以较好的进行减振器失效的仿真分析,表明仿真模型能够指导实际工程设计以及相关的性能预测。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号