首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 2 毫秒
1.
《Energy》2001,26(10):919-929
Reactivities of three metal oxides (Fe2O3, TiO2 and MnO2) with Na2CO3, and of their reaction products with CO2, have been studied to enhance the O2-releasing step in the two-step water splitting by the MnFe2O4–Na2CO3 system. X-ray diffraction analysis and thermogravimetric measurements showed that the reaction of α-Fe2O3 with Na2CO3 (mole ratio=1:1) completed within 10 min at 1073 K to produce NaFeO2 (Fe2O3+Na2CO3→NaFeO2+CO2). Also, the regeneration of Fe2O3 and Na2CO3 proceeded readily by passing CO2 gas through NaFeO2 (71% yield). TiO2 reacted with Na2CO3 (mole ratio=1:1) at 1073 K for 1 h to form Na8Ti5O14 and Na2TiO3 (93% yield). However, in the reaction of the products with CO2, the starting material (TiO2) was not reproduced at the temperature range from 673 K to 1073 K, but Na4Ti5O12 (having a lower Na content than the form Na8Ti5O14) was formed. In the case of MnO2 with Na2CO3 (mole ratio=2:1), Na0.7MnO2–2.05 and NaMnO2 were produced at 1073 K for 1 h (80% yield), but the reaction between these products and CO2 hardly proceeded.  相似文献   

2.
To improve the cycling performance of LiNi0.8Co0.15Al0.05O2 at 55 °C, a thin Ni3(PO4) layer was homogeneously coated onto the cathode particle via simple ball milling. The morphology of the Ni3(PO4)2-coated LiNi0.8Co0.15Al0.05O2 particle was characterized using SEM and TEM analysis, and the coating thickness was found to be approximately 10-20 nm. The Ni3(PO4)2-coated LiNi0.8Co0.15Al0.05O2 cell showed improved lithium intercalation stability and rate capability especially at high C rates. This improved cycling performance was ascribed to the presence of Ni3(PO4)2 on the LiNi0.8Co0.15Al0.05O2 particle, which protected the cathode from chemical attack by HF and thus suppressed an increase in charge transfer resistance. Transmission electron microscopy of extensively cycled particles confirmed that the particle surface of the Ni3(PO4)2-coated LiNi0.8Co0.15Al0.05O2 remained almost undamaged, whereas pristine particles were severely serrated. The stabilization of the host structure by Ni3(PO4)2 coating was also verified using X-ray diffraction.  相似文献   

3.
The effect of CeO2 loading amount of Ru/CeO2/Al2O3 on CO2 methanation activity and CH4 selectivity was studied. The CO2 reaction rate was increased by adding CeO2 to Ru/Al2O3, and the order of CO2 reaction rate at 250 °C is Ru/30%CeO2/Al2O3 > Ru/60%CeO2/Al2O3 > Ru/CeO2 > Ru/Al2O3. With a decrease in CeO2 loading of Ru/CeO2/Al2O3 from 98% to 30%, partial reduction of CeO2 surface was promoted and the specific surface area was enlarged. Furthermore, it was observed using FTIR technique that intermediates of CO2 methanation, such as formate and carbonate species, reacted with H2 faster over Ru/30%CeO2/Al2O3 and Ru/CeO2 than over Ru/Al2O3. These could result in the high CO2 reaction rate over CeO2-containing catalysts. As for the selectivity to CH4, Ru/30%CeO2/Al2O3 exhibited high CH4 selectivity compared with Ru/CeO2, due to prompt CO conversion into CH4 over Ru/30%CeO2/Al2O3.  相似文献   

4.
In this work, the crystal structure and hydrogen storage properties of V35Ti30Cr25Fe10, V35Ti30Cr25Mn10, V30Ti30Cr25Fe10Nb5 and V35Ti30Cr25Fe5Mn5 BCC-type high entropy alloys have been investigated. It was found that high entropy promotes the formation of BCC phase while large atomic difference (δ) has the opposite effect. Among the four alloys, the V35Ti30Cr25Mn10 alloy shows the highest hydrogen absorption capacity while the V35Ti30Cr26Fe5Mn5 alloy exhibits the highest reversible capacity. The cause of the loss of desorption capacity is mainly due to the high stability of the hydrides. The higher room-temperature desorption capacity of the V35Ti30Cr25Fe5Mn5 alloy is due to higher hydrogen desorption pressure. After pumping at 400 °C, the hydrides can return to the original BCC structure with only a small expansion in the cell volume.  相似文献   

5.
Novel oxygen-deficient double-perovskite type oxide Ba2NixCo2−xO6 was applied to produce O2/CO2 mixed stream gas for oxyfuel combustion application. A series of different Co concentration substituted Ba2NixCo2−xO6 was synthesized by an EDTA-citrate sol-gel combustion method. The oxygen carriers, Ba2Ni0.25Co1.75O6, Ba2Ni0.45Co1.55O6, Ba2Ni0.65Co1.35O6 and Ba2Ni0.85Co1.15O6 were c\characterized by scanning electron microscopy and cyclic oxygen adsorption/desorption experiments. The results showed that the capacity of provided O2 was improved by the partial substitution of Ni by Co. In addition, the synthesized perovskites exhibit good regeneration ability. The optimal degree of Co substitution was x = 0.25 for Ba2NixCo2−xO6 with consideration of oxygen desorption ability. Therefore, Ba2Ni0.25Co1.75O6 was selected to examine the influence of the operating parameters on the oxygen release performance. It was found that the desorption temperature and CO2 partial pressure are the two main operating parameters for the oxygen desorption performance. Further, the proposed novel double perovskite Ba2Ni0.25Co1.75O6 provided excellent performance, the O2 production of Ba2Ni0.25Co1.75O6 can still reach 120 mg/g after 10 cycles.  相似文献   

6.
The microstructure and electrochemical behavior of V2.1TiNi0.4Zr0.06Cr0.152 hydrogen storage electrode alloy have been investigated in comparison with V2.1TiNi0.4Zr0.06 alloy. The results show that V2.1TiNi0.4Zr0.06Cr0.152 alloy consists of a V-based solid solution main phase and a C14-type Laves secondary phase in the form of three-dimensional network, being similar to V2.1TiNi0.4Zr0.06 alloy, the secondary phase precipitates along the grain boundaries of the main phase. As compared with V2.1TiNi0.4Zr0.06 alloy, the unit cell volume of each phase in the V2.1TiNi0.4Zr0.06Cr0.152 alloy contracts. It is found that adding Cr restricts the dissolution of vanadium and titanium into the KOH electrolyte, and improves the corrosion resistance of the alloy, thus the cycling stability after 30 cycles increases from 22.34% (V2.1TiNi0.4Zr0.06) to 77.96% (V2.1TiNi0.4Zr0.06Cr0.152). Furthermore, V2.1TiNi0.4Zr0.06Cr0.152 alloy has a better high-rate dischargeability and higher exchange current density compared with V2.1TiNi0.4Zr0.06 alloy, but its maximum discharge capacity decreases.  相似文献   

7.
The feasibility of transition metal coated fullerene cages M12C48B12(M = Fe, Co, and Ni) for hydrogen storage is investigated by the pseudopotential density functional theory. Fe12C48B12(Co12C48B12 and Ni12C48B12) adsorbs 60(48 and 48) H2 with moderate average adsorption energy of 0.50(0.45 and 0.32) eV/H2. The gravimetric hydrogen density of Fe12C48B12(Co12C48B12 and Ni12C48B12) can reach 8.7(6.8 and 6.8) wt%. The Dewar–Kubas interaction dominates the adsorption of H2 on the outer surface of Fe12C48B12(Co12C48B12 and Ni12C48B12). Therefore, the stable M12C48B12(M = Fe, Co, and Ni) cages can be applied as candidates for hydrogen storage under near-ambient conditions.  相似文献   

8.
Ce0.8Sm0.2O2−δ, Ce0.8Nd0.2O2−δ and Ce0.8Sm0.1Nd0.1O2−δ samples were prepared by a citrate sol-gel method. Effects of microstructures and oxygen vacancies of the samples on their electrical properties were investigated by X-ray diffraction (XRD), scanning electron microscope (SEM), in situ Raman spectroscopy and AC impedance spectroscopy. SEM results indicated that larger grains were formed on the Ce0.8Nd0.2O2−δ and Ce0.8Sm0.1Nd0.1O2−δ electrolytes compared to that on the Ce0.8Sm0.2O2−δ. In situ Raman spectra suggested that the concentration of oxygen vacancies of the Ce0.8Sm0.1Nd0.1O2−δ sample was the highest while that of Ce0.8Sm0.2O2−δ was the lowest. It was found that the difference in the electrical conductivity for these electrolytes was closely related to the microstructure and oxygen vacancies of the samples. The highest electrical conductivity obtained on the Ce0.8Sm0.1Nd0.1O2−δ sample was ascribed to its larger grain size and higher concentration of oxygen vacancies.  相似文献   

9.
The incorporation of In2O3 nanoparticles on mesoporous La0.02Na0.98TaO3 photocatalysts is very interesting for promoting the H2 production under UV illumination in the presence of [10%] glycerol as a hole scavenger. It is demonstrated that an outstanding mesoporous In2O3/La0.02Na0.98TaO3 photocatalyst can be constructed by incorporating In2O3 nanoparticles (0-2 wt%) and mesoporous La0.02Na0.98TaO3 nanocomposites for highly promoting photocatalytic H2 evolution. The maximum yield of H2 ~ 2350 μmol g−1 was obtained over mesoporous 1%In2O3/La0.02Na0.98TaO3 nanocomposite. The mesoporous 1%In2O3/La0.02Na0.98TaO3 nanocomposite exhibited further enhancement H2 production, in which the rate of H2 evolution can be as high as 235 μmol g−1 h−1, 435 times higher than those of mesoporous La0.02Na0.98TaO3. The results showed that the 1%In2O3/La0.02Na0.98TaO3 photocatalyst possesses high stability and durability for H2 evolution by implying almost no photoactivity reduce after five cycles for 45 h continuous illumination. The measurement of photoluminescence spectroscopy, transient photocurrent spectra and UV- diffuse reflectance spectra for all synthesized samples exhibited that the promoted H2 production is mainly explained by its effective electron-hole separation and broaden photoresponse region due to its compositions and structures of the obtained heterostructures.  相似文献   

10.
A new catalyst for both water reduction and oxidation, based on an infinite chain, {[Ni(tn)2]3 [Fe(CN)4 (μ-CN)2]2}n, is formed by the reaction of NiCl2, 1,3-propanediamine (tn) and K3 [Fe(CN)6]. {[Ni(tn)2]3 [Fe(CN)4 (μ-CN)2]2}n can electro-catalyze hydrogen evolution from a neutral aqueous buffer (pH 7.0) with a turnover frequency (TOF) of 1561 mol of hydrogen per mole of catalyst per hour (H2/mol catalyst/h) at an overpotential (OP) of 837 mV {[Ni(tn)2]3 [Fe(CN)4 (μ-CN)2]2}n also can electro-catalyze O2 production from water with a TOF of ~45 mol O2 (mol cat)?1s?1 at an OP of 591 mV. Under blue light (λ = 469 nm), together with CdS nanorods (CdS NRs) as a photosensitizer, and ascorbic acid (H2A) as a sacrificial electron donor, {[Ni(tn)2]3 [Fe(CN)4 (μ-CN)2]2}n can photo-catalyze hydrogen generation from an aqueous buffer (pH 4.0) with a turnover number (TON) of 11,450 mol H2 per mole of catalyst (mol of H2 (mol of cat)?1) during 10 h irradiation. The average of apparent quantum yield (AQY) is as high as 40.96% during 10 h irradiation. Studies indicate that {[Ni(tn)2]3 [Fe(CN)4 (μ-CN)2]2}n exists in two forms: a cyano-bridged chain ({[Ni(tn)2]3 [Fe(CN)4 (μ-CN)2]2}n) in solid, and a salt ([Ni(tn)2]3 [Fe(CN)6]2) in aqueous media; Catalytic reaction occurs on the nickel center of [Ni(tn)2]2+, and the introduction of [Fe(CN)6]3- can improve the catalytic efficiency of [Ni(tn)2]2+ for H2 or O2 generation. We hope these findings can afford a new method for the design of catalysts for both water reduction and oxidation.  相似文献   

11.
This study is to convert renewable H2 and increasingly concerned CO2 to ethylene or C2H4 over Fe3.33Co1.67K5/ZrO2 and Fe3.33Co1.67K5/Al2O3 catalysts. The ZrO2 support provides amounts of surface oxygen vacancies (OVs) as well as stable and rich surface hydroxyl groups (-OH), which promotes the Fe3.33Co1.67K5/ZrO2 catalysts with 5% Fe and Co loadings to achieve C2H4 space time yield (STY) of 0.064 mmolC2H4∙m−2cat∙h−1 at 290 °C and 2.0 MPa, while the Fe3.33Co1.67K5/Al2O3 catalysts only reach C2H4 STY of 0.009 mmolC2H4∙m−2cat∙h−1 at 330 °C and 2 MPa Fe3.33Co1.67K5/ZrO2 catalysts are very promising for converting the captured CO2 and renewable H2 to highly demanded C2H4. This work not only provides a guideline for developing efficient catalysts but also advances the mechanistic understanding of catalytic CO2 hydrogenation.  相似文献   

12.
In this study, nano-crystalline LiCoO2 was coated onto the surface of Li1.05Ni0.35Co0.25Mn0.4O2 powders via sol–gel method. The influence of the coating on the electrochemical behavior of Li1.05Ni0.35Co0.25Mn0.4O2 is discussed. The surface morphology was characterized by transmission electron microscopy (TEM). Nano-crystallized LiCoO2 was clearly observed on the surfaces of Li1.05Ni0.35Co0.25Mn0.4O2. The phase and structural changes of the cathode materials before and after coating were revealed by X-ray diffraction spectroscopy (XRD). It was found that LiCoO2 coated Li1.05Ni0.35Co0.25Mn0.4O2 cathode material exhibited distinct surface morphology and lattice constants. Cyclic voltammetry (2.8–4.6 V versus Li/Li+) shows that the characteristic voltage transitions on cycling exhibited by the uncoated material are suppressed by the 7 wt.% LiCoO2 coating. This behavior implies that LiCoO2 inhibits structural change of Li1.05Ni0.35Co0.25Mn0.4O2 or reaction with the electrolyte on cycling. In addition, the LiCoO2 coating on Li1.05Ni0.35Co0.25Mn0.4O2 significantly improves the rate capability over the range 0.1–4.0C. Comparative data for the coated and uncoated materials are presented and discussed.  相似文献   

13.
Density Functional Theory (DFT) calculations were employed to study a series of coinage metal-hydrogen associations formulated as [M(Η2)n][A] (M = CuI, AgI or AuI, n = 1–5). The [M(Η2)n][A] salts utilize both their anions and cations for H2 storage. The [M(Η2)n]+ cations could be stabilized in the solid state by voluminous counter-anions, i.e. the [(H3B) (BH2NH2)5(NH2)]-, [B(CNBH3)3]- and [B12H12]- anions. The estimated bond dissociation energies (BDEs) of the M···(η2-H2) bonds are 5–17, 4–11 and 1–26 kcal/mol for the [Cu(Η2)4]+, [Ag (Η2)4]+ and [Au (Η2)4]+ cationic species respectively, while the fifth H2 molecule is estimated to be very loosely associated to the metal center. Four H2 molecules could be exploited from the [Cu(Η2)n][A] and [Ag (Η2)n][A] molecules in addition to the amount of H2 stored in the anion [A]-. Among the [M(Η2)n][A] salts optimal gravimetric, kinetic and thermodynamic properties and relatively low cost, are predicted for [Cu(Η2)n][(H3B) (BH2NH2)5(NH2)].  相似文献   

14.
The electronic structures of Zr8Co8 and its hydrides have been systematically investigated using the first-principles calculation based on density functional theory. Additionally, the influence of the Ti and Hf doping on the atomic bonding properties of Zr8Co8 and its hydrides (Zr7HfCo8, Zr7HfCo8H, Zr16Co15HfH48, Zr7TiCo8, Zr7TiCo8H, and Zr16Co15TiH48 compounds) were also studied to provide new insights into the hydrogenation of Zr8Co8. The Ti and Hf atoms were occupied the Zr position in the ZrCo alloy, while they were occupied the Co position in the Zr16Co16H48 system. Ti and Hf doping could achieve the purpose of anti-disproportionation. Ti and Hf could weak the Zr–Co bond for the improvement of the hydrogenation performance of Zr8Co8, and the covalence of the Co–H bond was higher than that of the Zr–H bond. The existence of a Co–H covalent bond in the crystal is conducive to the hydrogen absorption of Zr8Co8 to form Zr16Co16H48. Inhibition of Co–H interaction during Zr8Co8 hydrogenation can accelerate the formation of Zr8Co8H for the improvement of its hydrogenation performance.  相似文献   

15.
Mg(BH4)2 occupies a large hydrogen storage capacity of 14.7 wt%, and has been widely recognized to be one of the potential candidates for hydrogen storage. In this work, 2D MXene Ti3C2 was introduced into Mg(BH4)2 by a facile ball-milling method in order to improve its dehydrogenation properties. After milling with Ti3C2, Mg(BH4)2–Ti3C2 composites exhibit a novel “layered cake” structure. Mg(BH4)2 with greatly reduced particle sizes are found to disperse uniformly on Ti3C2 layered structure. The initial dehydrogenation temperature of Mg(BH4)2 has been decreased to 124.6 °C with Ti3C2 additive and the hydrogen liberation process can be fully accomplished below 400 °C. Besides, more than 10.8 wt% H2 is able to be liberated from Mg(BH4)2–40Ti3C2 composite at 330 °C within 15 min, while pristine Mg(BH4)2 merely releases 5.3 wt% hydrogen. Moreover, the improved dehydrogenation kinetics can be retained during the subsequent second and third cycles. Detailed investigations reveal that not only Ti3C2 keeps Mg(BH4)2 particles from aggregation during de/rehydrogenation, but also the metallic Ti formed in-situ serves as the active sites to catalyze the decomposition of Mg(BH4)2 by destabilizing the B–H covalent bonds. This synergistic effect of size reduction and catalysis actually contributes to the greatly advanced hydrogen storage characteristics of Mg(BH4)2.  相似文献   

16.
In this study, a new oxygen-deficient cathode material, Sm0.5Sr0.5Co1−xCuxO3−δ (SSCCu) was developed. It is expected to enhance the efficiency of intermediate-temperature solid oxide fuel cells (IT-SOFCs). The structure, conductivity and electrochemical performance of SSCCu were examined as a function of copper content. The structure of Sm0.5Sr0.5Co0.9Cu0.1O3−δ and Sm0.5Sr0.5Co0.8Cu0.2O3−δ samples was a single orthorhombic perovskite phase. Second phase SrCoO2.8, however, formed in the Sm0.5Sr0.5Co0.7Cu0.3O3−δ and Sm0.5Sr0.5Co0.6Cu0.4O3−δ samples. The conductivity of the Sm0.5Sr0.5Co0.7Cu0.3O3−δ cathode was higher than that of other samples. However, the Sm0.5Sr0.5Co0.8Cu0.2O3−δ electrode exhibited the lowest overpotential of 25 mV at 400 mA cm−2 and the lowest area special resistance of 0.2 Ω cm2 at 700 °C.  相似文献   

17.
The efficient visible light-driven photoelectrocatalyst (denoted as g-C3N4-CO-TETA-Pr-SiW11) was designed through the organic linker strategy by combination of polyoxometalate (POM) (cluster of [SiW11O39]?8 (SiW11)) with graphitic carbon nitride (g-C3N4). For this purpose, a reactive tetradentate NH2 linker was introduced by oxidation and subsequently amidation reactions on the surface of g-C3N4 frameworks then SiW11 was bonded to the organic linker to generate g-C3N4-CO-TETA-Pr-SiW11. In this study, for the first time, this organic linker strategy was applied for covalent combination of POM and g-C3N4 to design a stable photocatalyst with high-performance. Photoelectrocatalytic performance of prepared catalysts was investigated under visible light irradiation. The photocurrent density of 0.17 mA cm?2 for g-C3N4-CO-TETA-Pr-SiW11 compared with 0.077 mA cm?2 for g-C3N4 was achieved. Investigation of the transient open circuit potential decay and photoluminescence showed the efficient electron-hole separation for g-C3N4-CO-TETA-Pr-SiW11. The arc diameter in Nyquist plots indicated the improved charge transfer and charge carrier's lifetimes after decorating of g-C3N4 with POM. Mott?Schottky plots demonstrated a greater electron transfer at the photo electrode/electrolyte interface for g-C3N4-CO-TETA-Pr-SiW112.8 in compared to g-C3N4. Also, the photoconversion efficiency exhibited more than 2.4 time enhancement for g-C3N4-CO-TETA-Pr-SiW11 photoanode compared to g-C3N4.  相似文献   

18.
The LaY2Ni9.7Mn0.5Al0.3 and LaSm0.3Y1.7Ni9.7Mn0.5Al0.3 alloys have been synthesized to investigate the effect of Sm partial substitution for Y on the cyclic stability of A2B7-type La–Y–Ni-based alloys. Their cyclic properties were also compared with the A2B7-type (RE0.85Mg0.15)2(NiAl)7 (RE = Rare Earth) alloys. The gas-solid and electrochemical cycle lives were tested. The structural stability, pulverization, and oxidation/corrosion performances were studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), and electrochemical methods. The partial substitution of Sm for Y improves anti-corrosion and anti-pulverization performances, thereby increasing the cycle life of A2B7-type La–Y–Ni-based hydrogen storage alloys. The A2B7-type RE–Y–Ni-based alloys exhibit better crystal structure stability, but the gas-solid and electrochemical cyclic stability is worse than A2B7-type (RE0.85Mg0.15)2(NiAl)7 alloys due to easier pulverization of particles and the oxidation of Y elements.  相似文献   

19.
Composite electrolytes of NH4PO3/pyrophosphate (NH4PO3/ZrP2O7, NH4PO3/Sr2P2O7, and NH4PO3/TiP2O7) with various molar ratios were fabricated, and their thermal and electrochemical properties were compared at intermediate temperatures. The XRD pattern of NH4PO3/Sr2P2O7 composite was consistent with a mixed phase of crystalline NH4PO3 and Sr2P2O7 regardless of the composition ratio, whereas those of the other composites were identical to pyrophosphates. A significant difference in conductivity was observed depending on the supporting matrices of pyrophosphates although each composite contained almost the same molar concentration of NH4PO3. Among the composites, NH4PO3/ZrP2O7 (molar ratio; 1:1) exhibited the highest proton conductivity, which was more than twice that of NH4PO3/TiP2O7 (1:1). The conductivity of NH4PO3/Sr2P2O7 (2:1) composite was 2–3 orders of magnitude lower than that of NH4PO3/ZrP2O7 (1:1). These results suggest that the surface property of pyrophosphates strongly affects the electrochemical properties of composites. Furthermore, a fuel cell that used NH4PO3/ZrP2O7 composite as an electrolyte was successfully demonstrated at 300 °C.  相似文献   

20.
The n-CdZn(S1−xSex) and p-CuIn(S1−xSex)2 thin films have been grown by the solution growth technique (SGT) on glass substrates. Also the heterojunction (p–n) based on n-CdZn (S1−xSex)2 and p-CuIn (S1−xSex)2 thin films fabricated by same technique. The n-CdZn(S1−xSex)2 thin film has been used as a window material which reduced the lattice mismatch problem at the junction with CuIn (S1−xSex)2 thin film as an absorber layer for stable solar cell preparation. Elemental analysis of the n-CdZn (S1−xSex)2 and p-CuIn(S1−xSex)2 thin films was confirmed by energy-dispersive analysis of X-ray (EDAX). The structural and optical properties were changed with respect to composition ‘x’ values. The best results of these parameters were obtained at x=0.5 composition. The uniform morphology of each film as well as the continuous smooth thickness deposition onto the glass substrates was confirmed by SEM study. The optical band gaps were determined from transmittance spectra in the range of 350–1000 nm. These values are 1.22 and 2.39 eV for CuIn(S0.5Se0.5)2 and CdZn(S0.5Se0.5)2 thin films, respectively. JV characteristic was measured for the n-CdZn(S1−xSex)2/p-CuIn(S1−xSex)2 heterojunction thin films under light illumination. The device parameters Voc=474.4 mV, Jsc=13.21 mA/cm2, FF=47.8% and η=3.5% under an illumination of 85 mW/cm2 on a cell active area of 1 cm2 have been calculated for solar cell fabrication. The JV characteristic of the device under dark condition was also studied and the ideality factor was calculated which is equal to 1.9 for n-CdZn(S0.5Se0.5)2/p-CuIn(S0.5Se0.5)2 heterojunction thin films.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号