首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
哈尔滨地区人体热舒适与热适应现场研究   总被引:3,自引:1,他引:3  
为了考察不同季节人体对室内热环境的适应性和冬季外窗冷辐射对人体局部热感觉的影响,对哈尔滨市冬季、春季采暖期间教室内热环境与人体热感觉及热舒适进行现场调查.在对环境参数进行测试的同时,对受试者的热感觉进行主观调查.结果表明:冬季室内热中性温度与测试期间室内平均温度接近,春季采暖末期热中性温度明显低于室内平均温度.靠窗组受试者的局部冷感觉明显高于对照组受试者.人体肩部和后背更易感到冷,头部更适应冷环境.在偏暖的环境中,冬季比春季人们更容易感到热.说明人们对哈尔滨漫长冬季的室内热环境和寒冷的室外气候已经充分适应,冬季室内温度过高,人们会感觉更加不适.宜充分利用人对热环境的适应性适当降低冬季和春季采暖末期室内温度,既舒适又节能.  相似文献   

2.
沈阳市商场冬季热舒适的实测调查研究   总被引:4,自引:1,他引:4  
研究人员行为特点对于热舒适感的综合影响,根据建筑物内人员行为的变化,实现对建筑物室内热环境参数的动态优化和调节,在改善室内热环境的同时,对实现建筑节能具有一定的促进作用.笔者选取沈阳市3座全年采用中央空调的商场作为研究对象,采用问卷调查的方式,对商场内热环境的人体热感觉,吹风感觉及热舒适感觉进行了研究,利用统计学的方法分析了沈阳市商场冬季室内的设计参数,得出了沈阳市商场室内的中性温度为18 5℃,舒适范围为16 6~21 3℃;并就此分析了性别、年龄等人员行为因素对热舒适的影响.女性比男性的中性温度高1 4℃;40岁以上的人比40岁以下的中性温度低0 6℃.  相似文献   

3.
为研究热湿工况下使用工位辐射空调的人体热舒适情况,在人工环境实验室内,通过改变环境背景温度来影响人体的热感觉,并采用热感觉投票(TSV)作为评价标准,重点研究了人体头部、躯干、上肢、下肢以及整体热感觉情况。实验结果表明,尽管背景环境参数超出舒适范围,但使用工位辐射空调能维持受试者的舒适状态,即背景温度稳定在28 ℃时,平均整体热感觉投票值低于+0.2;背景温度为30 ℃时,受试者热感觉仍能满足ASHRAE规范中规定的80%可接受范围要求。  相似文献   

4.
对青海乡域4所典型中小学校10间教室冬季室内温湿度、风速、黑球温度等热环境参数进行现场测试,同时对420余名青少年学生的衣着情况、热感觉评价等进行了主观问卷调查。对测试和调查结果进行统计分析,得到实测和预测热中性温度分别为13.8和14.5℃,热期望温度为16.2℃,90%的学生感到满意的舒适温度范围为15.8~18.7℃。在当地寒冷的气候条件、学生衣着习惯、心理期望及生理特性等因素影响下,中小学生形成了对偏冷环境的适应性,提出可利用适应性PMV模型(aPMV)对中小学生平均热感觉进行准确预测。可为乡域中小学教室冬季热环境设计提供依据。  相似文献   

5.
为了定量认识幼儿园的室内热环境,对幼儿园儿童活动单元室内热环境进行了现场测试,得到室内空气相对湿度变化和室内温度空间分布的数据.对数据进行分析后,发现幼儿园室内热环境存在的一些问题:室内相对湿度过大以及冬季采暖方式不符合人体热舒适的要求,并通过数据证明建筑采用内庭院式平面布局有利于室内热环境的稳定.最后,提出了改善室内热环境的幼儿园儿童活动单元平面模式,强调了低温热水地板辐射采暖是符合幼儿活动特点和人体热舒适要求的采暖方式.  相似文献   

6.
为研究住宅热环境中人体热感觉,建立了影响人体热感觉的特征组合优化模型.利用遗传算法并行计算的优点,用“优胜劣汰”遗传算法对影响人体热感觉的特征变量进行选择,得出以下结论:在严寒地区冬季采暖期的居住建筑热环境中,影响人体热感觉的最有效特征变量是空气温度、平均辐射温度和服装热阻及其交互作用的影响.  相似文献   

7.
为了探究非均匀热辐射环境中局部辐射温度对人体热舒适的影响,利用温冷感实验和中国人体热调节模型,研究了局部辐射温度与局部和整体热感觉之间的关系。结果表明:头部、手部、脚部的热感觉对整体热感觉的回归系数分别为0.504、0.441、0.461,对整体热感觉影响显著;在冬季室内设计温度为16.0℃的供暖工况和夏季室内设计温度为28.0℃的供冷工况下,当脚部和头部的辐射温度分别为23.3℃和23.2℃时,人体的热舒适度可分别达到Ⅱ级和Ⅰ级;当室内风速为0.1m/s、相对湿度为50%,人体代谢量为1met,服装热阻冬季为1.2clo,夏季为0.7clo时,通过模型计算获得了人体等热舒适度线,并得到了局部环境空气温度与辐射温度的关系。  相似文献   

8.
文章针对西安地区过渡季室内热环境状况进行了研究,通过实测数据分析了壁面平均温度与人体衣着量及热舒适状况之间的关系.分析发现人体热感觉及衣着量与壁面平均温度有较大相关性,并且随着壁面平均温度的升高人体热感觉及衣着量对壁面平均温度的敏感性降低.当壁面平均温度达到22.2℃时,人体更易获得热舒适状态.将人体热感觉与室内空气温度、黑球温度、壁面平均温度进行敏感性分析后发现,在室内风速较低的情况下,人体热感觉对壁面平均温度的敏感性均高于空气温度及黑球温度.  相似文献   

9.
冬季睡眠状态下,室内热环境与被褥微气候分别对人体头部和被覆躯体的热感觉造成直接影响。为了分析两个热环境的匹配关系以满足睡眠人体的热舒适水平,实验在不同的室内温度下,调节被褥微气候温度,测试了受试者的皮肤温度,并记录了热感觉和热可接受水平。研究结果表明:睡眠状态下,相比于室内热环境,人体热感觉对被褥微气候更敏感;此外,通过分析室内热环境和被褥微气候分别与整体热感觉和整体不满意率的关系,得到了睡眠热环境舒适区间。  相似文献   

10.
陕西关中农村冬季住宅室内热舒适调查研究   总被引:1,自引:1,他引:1  
对36户关中地区农村住宅冬季室内物理环境参数进行测量,以问卷方式对居民的基本情况和以ASHRAE的7级热感觉标度对居民的热感觉主观反应进行调查统计.运用统计学分析方法对测试与调查结果进行回归分析,得到该地区居民冬季的热中性温度为11.7℃,热期望温度为12.7℃,冬季80%居民可接受温度范围的下限为8.0℃.  相似文献   

11.
为了研究内蒙古包头市住宅建筑夏季室内热环境现状和人体热适应状况,从影响人体热舒适的主要因素入手,采用客观热环境参数测试结合现场主观问卷调查的方法,得到了361个有效样本,通过分析得出包头自然通风住宅夏季室内舒适温度区间为23.8℃~26.9℃,居民夏季中性温度为24.9℃,期望温度为24.6℃.并结合其他研究成果,分析了严寒地区城市居民夏季的热适应状况.本文研究成果为今后严寒地区自然通风建筑的热环境设计与评价提供参考,并为热适应实地研究提供参考和依据.  相似文献   

12.
现有研究表明,良好的室内热环境不仅有助于学习效率的提升,还有利于建筑节能。因此,为学校建筑提供舒适的室内热环境具有重要意义。但是,目前对学校建筑热舒适的研究主要集中在经济发达地区,对经济欠发达地区的研究相对匮乏。为了填补经济欠发达地区高校建筑室内热环境和人体热舒适研究的空白,对中国夏热冬冷气候区经济欠发达地区(遵义)的自然通风高校建筑进行实地调查,并对非物理因素(如经济水平、过去的热经历、热期望等)对人体热舒适的影响进行探讨。结果表明:该地区自然通风高校建筑冬季室内热湿环境较恶劣,38.3%的受试者感到“凉”或“冷”。实测热中性温度为17.36 ℃,80%可接受温度区间为14.97~20.69 ℃,均比PMV-PPD预测模式下相应数值偏低。Griffiths模型预测的平均舒适温度为16.88 ℃。在非物理因素的作用下,该地区热中性温度和80%可接受温度区间均较夏热冬冷区发达地区低。所以,遵义地区自然通风高校建筑在改善冬季室内热环境时可考虑能耗低的被动式措施。  相似文献   

13.
绿色屋顶被认为是改善建筑物热湿环境和室内热舒适性的技术。为研究轻型绿色(LEG)屋顶对重庆市夏季室内温度、湿度和人体热舒适度的影响,对两栋自然通风的6层住宅内相似房间、不同类型的屋顶(LEG和普通型)进行了对比试验。结果表明,与普通屋顶建筑相比,夏季LEG屋顶室内温度较低。下午14:00,LEG屋顶的7月份室内月平均温度比室外低5.8℃,比普通屋顶室内月平均温度低4.9℃。7月24日,研究期间最炎热的晴天,LEG屋顶室内外温度明显不同,在中午时温差达到7.6℃,室内没有明显的温度分层。与普通屋顶相比,LEG屋顶的建筑内部湿度相对较高。PMV-PPD热舒适模型和热感投票(TSV)都表明,LEG屋顶可显著提高人体热舒适性。利用LEG屋顶可以实现更高的室内热舒适度和更低的室内热不满意度。  相似文献   

14.
哈尔滨市冬季居民热舒适现场研究   总被引:30,自引:4,他引:30  
为了研究适于寒地居民热舒适的热环境参数指标及探讨如何改善该地区居室热环境现状,对哈尔滨市66户住宅冬季室内热环境与居民热感觉、热舒适进行了现场调查,用室内气候分析仪及热舒适仪测试了热环境参数及PMV-PPD指标,收集了120名居民填写的热感觉、热舒适等主观调查表,与ISO7730及ASHRAE55-1992舒适标准对照,仅有77.5%的居民所处的热环境在热舒适范围内,但热环境接受率高达91.7%。80%居民可接受的操作温度是18.0-25.5℃,说明人们对环境的适应性很强,按ASHRAE7点标度计算出的热中性温度为21.5℃(以t0表示),所期望的温度为21.9℃,当相对湿度为20%-30%时,80%以上的居民感觉空气干燥,当相对湿度为30%-55%时,仍有40%以上的居民认为空气干燥。  相似文献   

15.
为了研究严寒地区冬季采暖期居住建筑室内的热环境状况,以绥化地区地板热辐射式采暖住宅为例,调查了其室内热舒适现状,探讨了改善建筑室内热环境的方法,采用测试、问卷调查等方式和以ASHRAE的7级热感觉标度,对该类建筑冬季室内热舒适情况和热感觉主观反映进行统计分析.结果显示,该地区冬季地板热辐射采暖居住建筑室内温度偏高、居民的热期望温度为24.9℃、冬季80%可接受的舒适温度范围为21.9~25.8℃.结合该地区特点,提出适合绥化地区地板辐射式采暖居住建筑冬季室内舒适温度区间为23~25℃,为改善当地住宅建筑节能设计提供依据.  相似文献   

16.
对桂林市某高校图书馆冬季室内热环境和学生的热舒适进行为期10天的现场主观问卷调查和室内外环境参数测试,并对结果进行线性回归分析。结果显示,冬季图书馆内平均温度和热中性温度分别为19.9、19.7℃,受试者满意度为83.1%;PMV模型预测热中性温度为23.4℃,与MTS计算值之间存在3.7℃的温差;操作温度可接受范围为13.7~25.7℃;受试者通过服装调节、心理期望等方式适应偏冷的热环境。  相似文献   

17.
亚热带气候区具有高温高湿的气候特点,为了延长自然通风模式、减少空调使用、降低能耗,风扇调节在室内通风调节中的比重日益增加,因此,风扇对农村居住者主观热舒适性和感知空气质量的影响起到了不可忽视的作用.为研究自然运行住宅建筑在使用风扇状态(FC模式),和未使用风扇状态(NFC模式)的人体热适应规律,确定评估这种建筑居住者热感觉的最佳方法,选取亚热带气候代表城市中国三亚和北海进行了热舒适现场调查.使用SPSS软件学对调研结果进行统计回归分析,利用ASHRAE 55标准与中国GB/T 50785中建立的适应性模型对分析结果进行评估比较.结果表明:当TSV为1.9,体感温度为31.6℃,室外空气温度为32.68℃时,风扇的室内热环境调节作用受到了较大限制;两种模式下TSV和PMV随温度变化的规律存在明显差异;利用适应性模型(a PMV)计算得出NFC、FC模式下自适应系数λ分别为0.12和0.43,均与GB/T50785规定值有所差异;相较于GB/T 50785,通过ASHRAE 55适应性模型获得的的评估结果与问卷主观结果更加一致,因此ASHRAE 55适应性模型被认为更适用于评价亚热带气候区使用风扇的自然运行状态民居的室内热湿环境;通过对获取数据按温度段进行回归分析,得到室外温度下满意率为80%和90%的可接受温度范围上限.  相似文献   

18.
对寒冷地区(B区)两户典型农村居住建筑的室内热环境进行了实地调研、问卷调查和数据实测,结果表明:滨州地区农村居住建筑冬季室内热舒适性较差,厨房、浴室室内湿度偏高,热环境现状不理想;冬季室内预测和实测热中性温度分别为16.9℃和5.9℃,居民热可接受温度范围为8.5~18.5℃.针对该地区农村居住建筑冬季室内热环境现状,...  相似文献   

19.
为了解居住建筑采暖期前后人体适应性热舒适的差异,采取现场热舒适的研究方法,对以西安为代表的寒冷地区采暖期前后人体热感觉、主要行为调节方式、中性温度以及自适应水平四个方面进行了比较分析.结果显示:采暖期后热感觉敏感度大于采暖期前;采暖期前人们随室温变换着装的敏感度大于采暖期后;中性温度受室内温度、室内热经历以及气温渐变趋势综合影响;采暖期后人体自适应水平较采暖期前低.  相似文献   

20.
室内环境参数差异条件下人体热感觉实验研究   总被引:2,自引:0,他引:2  
目的研究人体周围环境参数的差异对人体热感觉的影响,为工位空调送风量配置等的参数选择提供理论基础.方法在人工环境实验室内,通过改变工位空调的送风温度与送风速度来影响人体的热感觉,并采用热感觉投票(TSV)作为评价标准,重点研究了人体身前和身后的热感觉,以及它们与人体整体热感觉的关系问题.结果得到了不同送风参数和背景参数条件下,人体热感觉的投票结果.从实验结果分析,尽管背景区的环境参数略超出人体热舒适范围,通过调整送风参数,仍可使人体热感觉处于适中状态,表明人体整体热感觉与前身和后背热感觉存在着一定的差异,并进一步分析了人体前后热感觉与整体热感觉的关系.结论适当的局部送风可以有效地改善人体的热感觉,在工位送风条件下,人体前后的热感觉不同,但身前热感觉与总体热感觉的相关性较高.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号