首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 140 毫秒
1.
FeF3·0.33H2O具有理论容量和电压高的特点,但其导电性差、氧化还原反应过程中体积变化严重导致电化学循环性能不佳,应用受到限制。本研究采用多巴胺自组装包覆纳米立方Fe2O3颗粒,再经过碳化、HCl刻蚀和HF氟化的策略,合成了由N掺杂石墨烯外壳和纳米立方FeF3·0.33H2O内核所构成的蛋黄壳结构复合材料FeF3·0.33H2O@CNBs,粒径约250 nm,碳壳厚度为30~40 nm。FeF3·0.33H2O@CNBs在0.2C (1C=237 mA·g-1)电流密度下充放电初始容量为208 mAh·g-1,循环50圈之后容量仍然有173 mAh·g-1,每圈容量衰减率仅为0.3%;而纯FeF3·0.33H2O初始容量只有112 mAh·g-1...  相似文献   

2.
采用直流电弧等离子体法在甲烷和氩气混合气氛下原位合成碳化钛(TiC)纳米颗粒。X射线衍射、透射电子显微镜等物理表征结果显示TiC纳米颗粒粒径约为40~90 nm的立方体结构。循环伏安(CV)测试表明,TiC纳米颗粒兼具高效的氧还原和氧析出双效催化活性,可有效弥补炭材料氧析出催化活性较弱的缺陷。恒流充放电测试结果表明,相对于普通炭材料(导电炭黑,Super-P),TiC纳米颗粒催化剂可将锂空电池充电过电势降低280mV;在电流密度(isp)为50mA·g-1时,首次放电比容量达1267mAh·g-1;即使在较高的电流密度150mA·g-1下,比容量仍保持在778mAh·g-1,体现了良好的倍率性能。在电流密度为100mA·g-1、限定比容量为500mAh·g-1下,稳定循环10次。通过XRD、红外、扫描电镜表征可知,在TiC纳米颗粒的双效催化作用下,Li_2O_2的生成与分解具有良好的可逆性,有效避免了大量反应副产物积累的问题,进而提高锂空电池的电化学性能。  相似文献   

3.
采用乙二醇溶剂热法,以蔗糖为碳源,制备了橄榄石型纳米级LiFePO4/C复合正极材料,对其物相、形貌、结构、成分和性能进行了表征。结果表明,所制备的纳米LiFePO4/C的形貌为棒状,直径约为100 nm,结晶度高、分散性好。LiFePO4的粒径细化和掺碳有利于提高LiFePO4正极材料的电化学性能,其首次充放电比容量(0.1 C)分别为166 mAh·g-1和164 mAh·g-1,充放电电压平台分别为3.45 V和3.40 V;在5 C大倍率放电下,经过20次循环,其比容量保持率为95.4%。  相似文献   

4.
利用微胶囊技术将酚醛树脂包覆于纳米硅表面,然后在氩气保护下高温炭化,制得硅炭复合负极材料。首先采用4种不同质量比的酚醛树脂与纳米硅制备了硅碳复合材料,得到了不同炭质厚度的硅碳复合材料。通过对其循环性能和倍率性能的比较,发现酚醛树脂与纳米硅的质量比为1∶4,即碳层厚度为4.5 nm时,电化学性能最佳。随后对该种硅碳复合材料的综合电化学性能进行了测试,该材料作为负极制备的锂离子电池具有良好的电化学性能,在电流密度为100 mA g-1的条件下,其首次放电比容量为2 382 mAh g-1,首次充电比容量为1 667 mAh g-1,首次库伦效率为70%。经200次充放电循环后放电比容量为835.6 mAh g-1,库伦效率为99.2%。此外,其倍率性能非常优异,在100、200、500、1 000、2 000及100 mA g-1电流密度下,其平均放电比容量分别为1 716.4、1 231.6、911.7、676.1、339.8及1 326.4 mAh g-1...  相似文献   

5.
近年来,TiO2作为钠离子电池(NIB)负极材料,因其低成本和高稳定性等优势受到广泛关注。但受TiO2本征电子导电性的固有限制,使得TiO2作为NIB负极材料导电性较差,导致其容量和倍率等性能不理想。利用海藻酸钠与金属离子自主交联反应的特性,将反应产物在最佳温度下进行简单碳化,制备了具有分级多孔结构的TiO2/C复合材料,其中TiO2纳米颗粒均匀地分布在多孔互连的碳基体中,该结构提升了复合材料导电性的同时扩展了钠离子反应的附着位点。将TiO2/C复合材料用于NIB负极材料,在100 mA·g-1的电流密度下循环300圈后,电池可逆比容量维持在180.4 mAh·g-1;进一步,在更高的1000 mA·g-1电流密度下经过1000次循环后,电池可逆比容量维持在102.3 mAh·g-1,充分显示出TiO2/C复合材料作为NIB负极材料的应用潜能。  相似文献   

6.
过渡金属硒化物具有较高的理论比容量和良好的导电能力, 是钠离子电池潜在的负极材料, 但其在电化学过程中会发生较大体积变化, 循环寿命不佳, 发展受到了限制。为缓解上述问题, 本研究以金属有机框架材料ZIF-67为前驱体, 用单宁酸(Tannic acid, TA)将ZIF-67刻蚀为空心结构, 再通过碳化、硒化制备出以碳为骨架的纳米中空CoSe2材料(H-CoSe2/C), 相较于未经刻蚀处理的CoSe2材料(CoSe2/C), H-CoSe2/C表现出更好的储钠性能, 特别是循环稳定性得到显著提高。50 mA·g-1电流密度下, 经过350次循环, 可逆比容量保持在383.4 mAh·g-1, 容量保持率为83.6%; 在500 mA·g-1电流密度下, 经过350次循环后容量保持率仍能达到72.2%。本研究表明, 中空结构能够提供足够的空间以缓解材料在电化学过程中的体积变化, 进而提高电极材料的循环性能。  相似文献   

7.
以5-磺基水杨酸和戊二酸为螯合和氧化试剂,在水热条件下将硫酸钴氧化成纳米级Co3O4。以碳纳米管薄膜为载体将Co3O4颗粒紧密地附着在碳纳米管上使其填充入碳纳米管薄膜的空隙生成Co3O4/碳纳米管复合材料薄膜(Co3O4@CNTs),并研究其储锂性能。电化学测试结果表明,Co3O4@CNTs薄膜具有较高的放电比容量和优异的倍率性能,在0.2C倍率下初始放电比容量高达1712.5 mAh·g-1,100圈循环后放电比容量为1128.9 mAh·g-1的;在1C倍率下100圈循环后放电比容量仍然保持527.8 mAh·g-1。Co3O4@CNTs薄膜优异的性能源于Co3O4与CNTs的协同作用。高分散性的Co3O4增大了活性材料与电解液之间的接触面积,CNTs有助于形成良好的导电网络提高电子电导率,进而提高了Co3O4负极材料的循环性能和倍率性能。  相似文献   

8.
以水溶性酚醛树脂为碳源, Li2CO3为锂源, 纳米FePO4前躯体为铁源和磷源, 以水为介质, 采用湿法研磨混合均匀, 然后通过高温固相法制备出纳米磷酸亚铁锂/碳(LiFePO4/C)复合材料。采用XRD、SEM、TEM、TG和拉曼光谱对该复合材料进行了表征, 并研究了其电化学性能。结果表明, 制备的LiFePO4/C纳米颗粒为类球形, 表面均匀地包覆了一层约5 nm厚的碳层, 作为锂离子电池正极材料表现出良好的倍率性能和循环性能, 在0.2 C(1 C=170 mAh·g-1)、0.5 C、1 C、2 C、5 C、10 C下首次放电容量分别为151、150、146、142、132、119 mAh·g-1, 20 C下的首次放电容量也达105 mAh·g-1, 且循环50次几乎无衰减。  相似文献   

9.
本文采用溶胶-凝胶法制备了钴和钛共掺杂的层状LiNi0.82Co0.15Ti0.03O2正极材料,研究了离子掺杂对LiNiO2材料电化学性能的影响。XRD和XPS分析显示,钴和钛共掺杂可以抑制Li+和Ni2+离子在Li层的混排现象。电化学测试结果表明,钴单元素掺杂可以显著提高LiNiO2材料的倍率性能,而钛单掺杂则提高了材料的循环稳定性。进一步地,通过钴钛共掺杂的协同作用,可以使LiNiO2材料的倍率性能和循环稳定性同时得到极大的提高。在200 mA/g的电流密度下循环200次,LiNi0.82Co0.15Ti0.03O2材料的容量保持率高达94.4%,而未掺杂的LiNiO2材料容量保持率仅为57.1%;且在1000 mA/g的电流密度下,放电比容量仍能维持在100 mAh/g左右。  相似文献   

10.
用电弧蒸发法和固相硫化法制备核壳结构的碳约束NiS2纳米材料(NiS2@C)。用X射线衍射(XRD)、透射电镜(TEM)和Raman等手段对其表征的结果表明,外部碳层有较多的缺陷,厚度为4 nm,NiS2的粒径为28 nm。作为Na-S电池正极材料的电化学性能:在电流密度为100 mA·g-1条件下NiS2@C正极材料4次循环后库伦效率保持在90%以上,循环500次后仍有106.8 mAh·g-1的可逆比容量,具有较高的循环稳定性。电化学阻抗分析结果表明,NiS2@C外部碳层的良好电子导电性和优异的结构稳定性加快了电极反应并维持着界面离子迁移的动力学平衡。  相似文献   

11.
二硫化钼(Mo S2)作为水系锌离子电池的正极材料,受到锌离子(Zn2+)与主体框架之间的强静电相互作用表现出缓慢的反应动力学。并且Mo S2的层间距较窄难以嵌入大尺寸水合Zn2+,导致Mo S2电极呈现出较低的放电比容量。本研究通过一种简单的氨水辅助水热法制备了NH4+扩层的二硫化钼(Mo S2-N)电极,氨水分解产生的氨气在促进硫代乙酰胺水解和提供还原性S2–的同时,还会产生大量NH4+作为插层离子,将Mo S2的层间距由0.62 nm扩展至0.92 nm,进而大大降低了Zn2+嵌入能垒(改性电极的电荷转移电阻Rct低至35?)。当电流密度为0.1 A·g–1时,Mo S2-N电极的初始放电比容量相比未扩层的Mo S2  相似文献   

12.
采用原位溶剂热法,以氧化石墨烯(GO)与Co2+、Fe3+为原料制备疏松多孔的纳米CoFe2O4-还原氧化石墨烯(CoFe2O4-rGO)复合材料。采用XRD、Raman、SEM和HRTEM测试表征了纳米CoFe2O4-rGO复合材料的结构与形貌。测试结果表明,纳米CoFe2O4-rGO复合材料具有三维结构。自组装的多孔CoFe2O4纳米球粒径约为200 nm,在rGO上均匀分散,解决了CoFe2O4易团聚的问题。电化学测试结果表明,纳米CoFe2O4-rGO复合材料具有较高的比容量及优异的循环和倍率性能,在100 mA·g-1的电流密度下其比容量为1 262 mAh·g-1,50次循环后比容量仍能保持在642 mAh·g-1;并在2 000 mA·g-1的大电流密度下仍具有221 mAh·g-1的比容量。纳米CoFe2O4-rGO复合材料拥有更优异的电化学性能的原因在于CoFe2O4纳米球在rGO上均匀分布。三维结构增加了Li+储存的活性位点,有效缓解了电极的体积收缩/膨胀效应,提高了纳米CoFe2O4-rGO复合材料的导电性。   相似文献   

13.
以天然矿物纤水镁石为模板、蔗糖为碳源制备多孔碳纳米管, 并以硫脲为氮、硫源, 采用水热法制备氮/硫共掺杂的碳纳米管。结果表明, 掺杂碳纳米管继承了纤水镁石模板的柱状结构, 呈现中空管状, 增大了模板炭的比表面积和孔容。在6 mol·L-1 KOH电解液中, 电流密度为1 A·g-1时, 未掺杂碳纳米管的比电容为62.2 F·g-1, 氮掺杂之后碳纳米管的比电容为97.0 F·g-1, 氮/硫共掺杂的碳纳米管比电容为172.0 F·g-1, 氮/硫共掺杂后碳纳米管的电化学性能比未掺杂的提高近3倍; 循环1000次电容保持率达89%, 说明掺/硫共掺杂碳纳米管具有良好的电化学性能。此外, 组装的对称型超级电容器同样展示了良好的电容性能。  相似文献   

14.
以钛酸丁酯为钛源,用醇热法制备了N、Fe单掺杂及共掺杂纳米TiO2。对样品的晶型结构、表面形貌、比表面积、紫外可见吸收、光致发光和分解水制氢催化性能分别进行了表征。结果表明,在500℃退火的N、Fe共掺杂TiO2样品均为锐钛矿相棱形纳米颗粒,分散性较好,平均粒径约20 nm;N、Fe共掺杂的摩尔分数分别为5.0%和2.0%时,样品具有良好的可见光吸收活性,对光的吸收从387 nm(未掺杂锐钛矿相TiO2)红移至510 nm处。主要原因可能是,N和Fe共掺杂在其禁带中产生杂质能级,导致其禁带宽度减小;N、Fe单掺杂及共掺杂改性,有效抑制了电子-空穴的复合,提高了光生载流子的分离效率;在可见光下(λ>400 nm)N、Fe共掺杂TiO2具有较高的光催化分解水制氢活性,氢气生成速率为299.2μmol·g-1·h-1。  相似文献   

15.
过渡金属硫化物作为锂电池负极材料具有极高比容量,但其制备的电极普遍存在导电性差、体积变化大等问题,本研究设计了一种新型的自支撑CuS/SnS2镂空片状锂电池负极材料,以导电碳布作为基底,生长包覆CuS/SnS2镂空纳米片,具备特殊的纳米包覆结构及双金属协同效应,使其在保持较高比容量的同时具备良好的循环稳定性,整体电化学性能优异。研究不同Cu/Sn含量对CuS/SnS2负极材料电化学性能的影响,最佳配比的CuS/SnS2负极材料在0.2 A·g?1电流密度下循环50次后比容量为1480 mAh·g?1,库伦效率稳定在99.5%,在2 A·g?1电流密度下循环200次后比容量仍能保持在697 mAh·g?1,库伦效率为99.8%。   相似文献   

16.
以LiOH·H2O、NH4VO3和Mn(CH3COO)2·4H2O为原料,以柠檬酸(C6H8O7·H2O)为络合剂,用凝胶溶胶法按xLiV3O8·yLiMn2O4(x∶y=1∶0,4∶1,8∶l,12∶1,16∶1)合成出锂离子电池正极材料Mn4+-LiV3O8,并对其结构和电化学性能进行了研究.结果表明,用该法制备的...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号