首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
稻壳合成β—SiCl晶须/颗粒及其增强复合材料的应用   总被引:3,自引:0,他引:3  
本文对稻壳合成β-SiC晶须及β-SiC颗粒进行了研究,并对这两种产品进行了增强复合材料的应用,结果表明:稻壳合成β-SiC晶须的反应中,β-SiC颗粒的生成是不可避免的;β-SiC晶须有效地改善了陶瓷复合材料的力学性能及耐磨性能,以β-SiC颗粒增强的SiC基质复合材料的热压制品磨耗比为标准砂轮的49.5倍。  相似文献   

2.
采用粉末冶金法在较高的温度下制备了SiC,Si_3N_4和Al_(18)B_4O_(33)晶须增强Al-8.5Fe-1.3V-1.7Si耐热铝合金复合材料,山于采用不含Mg的基体避免了Al_(18)B_4O_(33)晶须界面上出现界面反应和Si_3N_4,SiC晶须界面上出现的界面生成物,所以所有晶须界面都是清洁的.加入晶须可以明显提高材料的强度和模量,三种晶须的增强效果依次为SiC,Si_3N_4和Al_(18)B_4O_(33).这类复合材料的强度随温度的升高呈线性下降,其使用温度可比SiC_w/2024Al复合材料提高50-100℃  相似文献   

3.
本文测定了SiCW/Al-Ni复合材料高温压缩变形的应力-应变曲线,讨论了该种复合材料高温压缩变形时所表现出的应变软化现象,利用SEM观察了SiCW/Al-Ni复合材料在高温压缩变形中晶须的转动,并对晶须长轴的取向分布函数及其与复合材料压缩流变应力之间的关系进行了较为详细的研究.研究结果表明,在压缩变形过程中,SiCW晶须的长轴要发生转动,并趋向垂直于压缩方向分布,晶须取向的重新分布是造成复合材料应变软化的主要原因.  相似文献   

4.
以酚醛树脂、超细炭黑和超细SiO2为原料,用微波加热的方法合成了直径在纳米级的SiC晶须。用X射线衍射、分析电镜等手段对SiC晶须进行了结构测定。比较并分析了不同的炭源和温度对SiC晶须性能的影响.  相似文献   

5.
挤压变形对SiCw/ZK51A镁基复合材料组织和性能的影响   总被引:7,自引:0,他引:7  
利用透射电镜、扫描电镜和拉伸试验等实验方法,研究了铸态和挤压态SiCw/ZK51A镁基复合材料的组织与力学性能。结果表明,挤压铸造SiCw/ZK51A复合材料经等温热挤压后,其力学性能有很大提高。主要原因是:挤压变形能消除铸造缺陷,增强SiC晶须与ZK51A镁合金基体的界面结合,使复合材料中SiC晶须发生定向分布,沿挤压方向呈准一维分布特征,晶须的增强承载能力得到充分发挥。  相似文献   

6.
胡冬昉  黄汉铨  黄建宇  夏非 《金属学报》1995,31(15):135-138
采用(Si+Mo)合金浸渗反应烧结SiC,以难熔MoSi_2作为第二相取代RB-SiC中的游离Si,从而获得RB-SiC/MoSi_2复合材料.实验结果表明,MoSi_2均匀、连续地分布于SiC颗粒界面处,形成连续网络.界面是由t-MoSi_2和β-SiC两相交错重叠所构成.界面层处未观察到反应层和非晶态物质,过渡层厚约5nm.  相似文献   

7.
马宗义  潘进 《金属学报》1994,30(9):B420-B426
采用粉末冶金法在较高的温度下制备了Sic,Si3N4和Al18B4O33晶须增强Al-8.5Fe-1.3V-1.7Si耐热铝合金复合材料,由于采用不含Mg的基体避免了Al18B4O33晶须界面上出现界面反应和Si3N4,SiC晶须界面上出现的办生成,所以所有晶须界面都是清洁的。加入晶须可以明显提高材料的强度和模量,三种晶贩增强效果依次为SiC,Si3N4和Al18B4O33。这类复合材料的强度随温  相似文献   

8.
本文研究了烧结助剂Ni对C-B_4C-SiC复合材料显微结构与性能的影响.X射线衍射表明Ni在烧结温度下与SiC,B_4C人发生反应在晶界生成Ni_(4.6)Si_2B,并产生液相,有效地促进了C-B_4C-SiC复合材料的烧结,抑制了晶粒的长大,使复合材料密度与强度大幅度地增加,电阻率下降;同时Ni_(4.6)Si_2B在氧化时生成致密的2NiO·B_2O_3,包裹了易氧化的B_4C和C,有效地防止了复合材料的氧化,从而大大提高了制品的抗氧化性能.  相似文献   

9.
树脂对碳毡硅化处理后的显微组织与性能影响   总被引:1,自引:0,他引:1  
研究了树脂对碳毡经处理后的显微组织与性能影响。结果表明,未浸渍树脂的碳毡硅化处理后的显微组织特点是反应生成的碳化硅颗细注且均匀分布在游离硅中;而浸渍树脂的碳毡硅化处理后的显微组织特点是反应生成的碳化硅颗粒粒径及分布均不均匀。大颗粒碳化硅的出现造成了试样断裂强度的降低,XRD结果表明Si-SiC复相陶瓷的主晶相为α-SiC,β-SiC和游离Si,不同晶型SiC的出现与试样烧结过程中Si/C反应的放热  相似文献   

10.
颗粒增强铸造铝基复合材料的研究   总被引:6,自引:1,他引:5  
本文探讨了用搅拌铸造法,采用常规的熔炼加工设备和工艺,制造SiC颗粒增强铝基复合材料的可行性;研究了不同SiC含量的复合材料的显微组织;试验表明:复合材料中SiC颗粒分布较为均匀,其力学性能均优越于基体合金,弥散分布的SiC颗粒是复合材料力学性能优异的主要原因。  相似文献   

11.
本文介绍了一种以稻壳为原料生产β-SiC颗粒的方法,研究了采用浮选法除碳的工艺。并介绍了影响浮选效果的几个重要因素。  相似文献   

12.
本文主要研究了不同SiC晶须加入量对莫来石基复合材料性能的影响,并对SiC晶须、ZrO2颗粒在材料中的强韧性机理进行了探讨,结果表明:在0 ̄25vol%SiC晶须加入量范围内,材料的力学性能随SiC晶须加入量的增加而提高,在25vol%SiC晶须加入量时,材料的致密化程度受到明显的影响;SiC晶须、ZrO2对材料性能的贡献有叠加作用;材料中存在载荷转移、晶须拔出/解离、裂纹偏转、相变增韧等韧化机理  相似文献   

13.
采用高温压缩实验研究了不同体积分数 SiC含量对原位合成 MoSi2—SiC复合材料在 1000-1400℃ 的屈服强度及流变应力的影响结果表明,与单- MoSi2材料相比,复合材料的高温强度随 SiC含量的增加而明显提高.高温屈服强度 σy和第二相 SiC粒子间距λS服从σY=σ0+kλS-1/2关系式结合组织结构的研究结果对其相间障碍强化的高温强化机制进行了初步探讨.  相似文献   

14.
CVD法合成SiC晶须的实验研究   总被引:2,自引:0,他引:2  
利用简单的实验设备,特殊的金属丝作触媒,以SiO2和C为原料,利用碳热还原反应生成的SiO和CO,通过CVD的方法快速合成α-SiC晶须,用光学显微镜研究了晶须的生长速度,通过TEM研究α-SiC晶须的结构和生长方式。讨论了这种方法中α-SiC晶须生长的热力学条件,机理及生长动力学模型。  相似文献   

15.
介绍了SiC颗粒增强Al-Cu合金叠层复合的制备方法,研究了叠层复合材料的抗弯强增强层的耐磨性与SiC颗粒含量的关系。结果表明,SiC颗粒体积分数为20%时该的抗弯强度最大,磨损量最小;SiC颗粒与基体结构强度及层间宏观应力影响材料的强度性能。  相似文献   

16.
SiC/Al-4%Mg复合材料的组织特征及界面分析   总被引:3,自引:1,他引:2  
试验观察发现,在SiC粒子增强Al-4%Mg复合材料中,绝大多数SiC粒子分布于α相的晶界,呈无规则排列,少量留在α相晶粒内。本文对其进行了理论分析,并对SiC粒子与Al基体的界面进行了微观观察和分析  相似文献   

17.
利用XRD,EPMA和HREM等测试技术对AlN/SiCw(Y2O3-SiO2)复合材料热处理增强机制进行了研究。结果表明:材料在1300℃空气中进行热处理,其氧化处理过程也是其热处理增强过程,增强机理主要是由于氧化擅长 用改变了粒界玻璃相的相组成,粒界玻璃相在高温氧经气氛下和AlN颗粒发生作用生成AlN多形体2H^δSialon相,并与SiC晶须形成空间交错的结构。  相似文献   

18.
研究了加入SiC晶须对Ti(C,N)基金属陶瓷抗弯强度和断裂韧性的影响。结果表明:加入10Vol%SiC晶须能提高抗弯强度和断裂韧性;该材料的载荷一位移曲线因晶须的反复阻止作用呈锯齿状;材料的良好强韧性是金属相增强增韧、裂纹偏转增韧以及SiC晶须的裂纹桥接与拔出效应共同作用的结果。  相似文献   

19.
介绍了SiC颗粒增强AlCu合金叠层复合材料的制备方法,研究了叠层复合材料的抗弯强度和增强层的耐磨性与SiC颗粒含量的关系。结果表明,SiC颗粒体积分数为20%时该材料的抗弯强度最大,磨损量最小;SiC颗粒与基体结合强度及层间宏观应力影响材料的强度性能  相似文献   

20.
原位SiC颗粒增强MoSi_2基复合材料的显微组织和力学性能   总被引:4,自引:0,他引:4  
本文研究了原位 SiC颗粒增强 MoSi2基复合材料的组织结构和力学性能。结果表明:复合材料的组织为t-MoSi2基体上均匀分布 β-SiC等轴颗粒,数量很少的球形小孔隙主要分布在 SiC颗粒内, SiC颗粒尺寸为 2-5 μm.复合材料界面为直接的原子结合,无非晶层存在.复合材料的室温维氏硬度、断裂韧性、抗压强度及高温流变应力明显高于单一MoSi2,随着SiC体积分数的增加,维氏硬度、断裂韧性及高温流变应力提高,而抗压强度先增加后减少. SiC体积分数从 10%增加到 45%,KIC从 4.34提高到 5.71 MPa·m1/2;与单一 MoSi2相比提高了 25%-46%; 1400℃时,σ0.2从 20%SiC的 230提高到 45%SiC的 285 MPa,比单一 MoSi2提高了 98%-146%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号