首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper describes a third-order sigma-delta (/spl Sigma//spl Delta/) modulator that is designed and implemented in 0.18-/spl mu/m CMOS process. In order to increase the dynamic range, this modulator takes advantage of mixed-mode integrators that consist of analog and digital integrators. A calibration technique is applied to the digital integrator to mitigate mismatch between analog and digital paths. It is shown that the presented modulator architecture can achieve a 12-dB better dynamic range than conventional structures with the same oversampling ratio (OSR). The experimental prototype chip achieves a 76-dB dynamic range for a 200-kHz signal bandwidth and a 55-dB dynamic range for a 5-MHz signal bandwidth. It dissipates 4 mW from 1.8-V supply voltages and occupies 0.7-mm/sup 2/ silicon area.  相似文献   

2.
Double-sampling techniques allow to double the sampling frequency of a switched capacitor /spl Sigma//spl Delta/ analog-to-digital convertors without increasing the clock frequency. Unfortunately, path mismatch between the double sampling branches may cause noise folding, which could ruin the modulator's performance. The fully floating double-sampling integrator is an interesting building block to be used in such a double sampling /spl Sigma//spl Delta/ modulator because its operation is tolerant to path mismatch. However, this circuit exhibits an undesired bilinear filter effect. This effectively increases the order of the modulator by one. Due to this, previously presented structures don't have enough freedom to fully control the modulator pole positions. In this paper, we introduce modified topologies for double-sampling /spl Sigma//spl Delta/ modulators built with bilinear integrators. We show that these architectures provide full control of the modulator pole positions and hence can be used to implement any noise transfer function. Additionally, analytical expressions are obtained for the residual folded noise.  相似文献   

3.
Bandpass modulators sampling at high IFs (/spl sim/200 MHz) allow direct sampling of an IF signal, reducing analog hardware, and make it easier to realize completely software-programmable receivers. This paper presents the circuit design of and test results from a continuous-time tunable IF-sampling fourth-order bandpass /spl Delta//spl Sigma/ modulator implemented in InP HBT IC technology for use in a multimode digital receiver application. The bandpass /spl Delta//spl Sigma/ modulator is fabricated in AlInAs-GaInAs heterojunction bipolar technology with a peak unity current gain cutoff frequency (f/sub T/) of 130 GHz and a maximum frequency of oscillation (f/sub MAX/) of 130 GHz. The fourth-order bandpass /spl Delta//spl Sigma/ modulator consists of two bandpass resonators that can be tuned to optimize both wide-band and narrow-band operation. The IF is tunable from 140 to 210 MHz in this /spl Delta//spl Sigma/ modulator for use in multiple platform applications. Operating from /spl plusmn/5-V power supplies, the fabricated fourth-order /spl Delta//spl Sigma/ modulator sampling at 4 GSPS demonstrates stable behavior and achieves a signal-to-(noise + distortion) ratio (SNDR) of 78 dB at 1 MHz BW and 50 dB at 60 MHz BW. The average SNDR performance measured on over 250 parts is 72.5 dB at 1 MHz BW and 47.7 dB at 60 MHz BW.  相似文献   

4.
This paper presents the first implementation results for a time-interleaved continuous-time /spl Delta//spl Sigma/ modulator. The derivation of the time-interleaved continuous-time /spl Delta//spl Sigma/ modulator from a discrete-time /spl Delta//spl Sigma/ modulator is presented. With various simplifications, the resulting modulator has only a single path of integrators, making it robust to DC offsets. A time-interleaved by 2 continuous-time third-order low-pass /spl Delta//spl Sigma/ modulator is designed in a 0.18-/spl mu/m CMOS technology with an oversampling ratio of 5 at sampling frequencies of 100 and 200 MHz. Experimental results show that a signal-to-noise-plus-distortion ratio (SNDR) of 57 dB and a dynamic range of 60 dB are obtained with an input bandwidth of 10 MHz, and an SNDR of 49 dB with a dynamic range of 55 dB is attained with an input bandwidth of 20 MHz. The power consumption is 101 and 103 mW, respectively.  相似文献   

5.
In this paper, we present a new continuous-time bandpass delta-sigma (/spl Delta//spl Sigma/) modulator architecture with mixer inside the feedback loop. The proposed bandpass /spl Delta//spl Sigma/ modulator is insensitive to time-delay jitter in the digital-to-analog conversion feedback pulse, unlike conventional continuous-time bandpass /spl Delta//spl Sigma/ modulators. The sampling frequency of the proposed /spl Delta//spl Sigma/ modulator can be less than the center frequency of the input narrow-band signal.  相似文献   

6.
We present a 90-dB spurious-free dynamic range sigma-delta modulator (/spl Sigma//spl Delta/M) for asymmetric digital subscriber line applications (both ADSL and ADSL+), with up to a 4.4-MS/s digital output rate. It uses a cascade (MASH) multibit architecture and has been implemented in a 2.5-V supply, 0.25-/spl mu/m CMOS process with metal-insulator-metal capacitors. The prototypes feature 78-dB dynamic range (DR) in the 30-kHz to 2.2-MHz band (ADSL+) and 85-dB DR in the 30-kHz to 1.1-MHz band (ADSL). Integral and differential nonlinearity are within /spl plusmn/0.85 and /spl plusmn/0.80 LSB/sub 14 b/, respectively. The /spl Sigma//spl Delta/ modulator and its auxiliary blocks (clock phase and reference voltage generators, and I/O buffers) dissipate 65.8 mW. Only 55 mW are dissipated in the /spl Sigma//spl Delta/ modulator.  相似文献   

7.
Leger  G. Rueda  A. 《Electronics letters》2004,40(21):1322-1323
A simple and fully digital solution to correct the effect of amplifier finite gain in cascade /spl Sigma//spl Delta/ modulators is presented. The main contribution of this study is a simple digital method to evaluate the integrator pole errors, which are further taken into account to modify the reconstruction filter. The method is applied to a 2-1 cascade modulator.  相似文献   

8.
The theoretical error signal analysis of a sigma-delta (/spl Sigma//spl Delta/) modulator is a difficult problem due to the presence of a nonlinear operation (the amplitude quantization) in a feedback loop. In this paper, new deterministic knowledge on the transfer function of a /spl Sigma//spl Delta/ modulator is established, thanks to some recently observed properties of its state variables. For a large class of typical /spl Sigma//spl Delta/ modulators with constant inputs, the state variables appear to remain in a tile. We show what characteristics in a /spl Sigma//spl Delta/ modulator are specifically responsible for this property and give some initial proof of it. Under a constant input, the tiling phenomenon has as fundamental consequence that the output is a fixed and memoryless modulo function of n successive integrated versions of the input. This gives the theoretical knowledge that the modulator has an equivalent feedforward circuit expression. We give some immediate theoretical consequences on error analysis including the case of time-varying inputs.  相似文献   

9.
We propose a digital background adaptive calibration technique for correcting offset and gain mismatches in time-interleaved multipath analog-digital (A/D) sigma-delta (/spl Sigma//spl Delta/) modulators. The proposed technique allows us to cancel the spurious tones introduced by offset and gain mismatches among the paths only by processing the digital output, without interfering with the operation of the modulator. This solution is also effective for any other time-interleaved A/D converter topology. Simulation results on a high-performance four-path bandpass /spl Sigma//spl Delta/ modulator, operating on a 5-MHz band at a clock frequency of 320 MHz, demonstrate the effectiveness of the proposed calibration technique, which allows us to achieve significant improvements of the signal-to-noise ratio and the spurious-free dynamic range in the presence of mismatches.  相似文献   

10.
An analytical design methodology for continuous-time (CT) bandpass (BP) /spl Sigma//spl Delta/ modulators is presented. Second- and fourth-order tunable continuous time BP /spl Sigma//spl Delta/ modulator design equations are presented. A novel /spl Sigma//spl Delta/ loop architecture, where the traditional CT BP loop filter function is replaced with the filter function with fractional delays, is proposed. Validity of the methodology is confirmed by mixed-signal behavioral simulations.  相似文献   

11.
This paper presents the design strategy, implementation, and experimental results of a power-efficient third-order low-pass /spl Sigma//spl Delta/ analog-to-digital converter (ADC) using a continuous-time (CT) loop filter. The loop filter has been implemented by using active RC integrators. Several power optimizations, design requirements, and performance limitations relating to circuit nonidealities in the CT modulator are presented. The influence of the low supply voltage on the various building blocks such as the amplifier as well as on the overall /spl Sigma//spl Delta/ modulator is discussed. The ADC was implemented in a 3.3-V 0.5-/spl mu/m CMOS technology with standard threshold voltages. Measurements of the low-power 1.5-V CT /spl Sigma//spl Delta/ ADC show a dynamic range and peak signal-to-noise-plus-distortion ratio of 80 and 70 dB, respectively, in a bandwidth of 25 kHz. The measured power consumption is only 135 /spl mu/W from a single 1.5-V power supply.  相似文献   

12.
/spl Sigma//spl Delta/ modulation is the currently successful technique used to perform high resolution analog-to-digital conversion. In spite of its practical success, its theoretical signal analysis has remained limited because a /spl Sigma//spl Delta/ modulator contains of a feedback loop that includes a nonlinear operation, i.e., the amplitude discretization or quantization. The feedback allows us to use oversampling to compensate for the limitations of the quantizer in resolution and in precision, which are typical of analog circuits. However, because of the lack of signal analysis, it is still not clear how much resolution of conversion can be gained as a function of the oversampling. We show that for a large class of /spl Sigma//spl Delta/ modulators, the feedback loop theoretically yields an equivalent feedforward signal flow graph, at least for constant inputs. This is possible thanks to remarkable modulo properties of these modulators. This equivalence can be asymptotically extrapolated to time-varying inputs with increasing oversampling. Although the exact components of the equivalent graph are not currently known in general, the theoretical structure of the feedforward graph is sufficient to point out misconceptions in the current knowledge on the final resolution of an nth-order /spl Sigma//spl Delta/ modulator. Specifically, except when the modulator is "ideal", the global resolution of conversion increases by n bits per octave of oversampling, instead of the currently believed rate of n+(1/2) bits/octave.  相似文献   

13.
Previous work has established that the digital output of a /spl Sigma//spl Delta/ modulator as an A/D converter contains more information about the analog input than is extracted with conventional linear filtering. Under reasonable mathematical assumptions, optimal nonlinear decoding of the digital output can achieve significantly larger signal-to-noise ratios than linear filtering. However, the hitherto proposed decoding algorithms only demonstrate conceptual feasibility and are impractical from a computational point of view. We present a new block-based decoding algorithm that, like previous work, employs projections onto convex sets. The algorithm owes its speed to a change of projection norm, an accelerated convergence scheme, and a decimation-like subsampling; it is on the order of 10/sup 4/-10/sup 5/ times faster than one previously published algorithm for typical parameter values, and about 2-10 times slower than linear decoding. The new algorithm is applicable to all currently popular /spl Sigma//spl Delta/ architectures.<>  相似文献   

14.
Existing models for the quantizer of /spl Sigma//spl Delta/ modulators make assumptions on the probability density function (pdf) of the quantization error, or some other convenient signal of the modulator. In this paper, a method for the determination of this pdf for single-bit /spl Sigma//spl Delta/ modulators is presented. First, a numerical method is proposed in order to solve the simplified equation for the quantization error pdf for first-order systems considering noiseless and noisy dc input signals. Then, it is shown how most practical high-order (>2)/spl Sigma//spl Delta/ modulators, resulting from well-established design methods, can be modeled as first-order systems plus an additive noise source at the input. Hence, their quantization error pdf is analyzed using the proposed method. Simulation results are shown to be in considerable agreement with those of the proposed method.  相似文献   

15.
We derive a method for using distributed resonators in /spl Delta//spl Sigma/ modulators and demonstrate these /spl Delta//spl Sigma/ modulators have several advantages over existing /spl Delta//spl Sigma/ modulator architectures. Like continuous-time (CT) /spl Delta//spl Sigma/ modulators, the proposed /spl Delta//spl Sigma/ modulators do not require a high-precision track-and-hold, and additionally can take advantage of the high-Q of distributed resonators. Like discrete-time /spl Delta//spl Sigma/ modulators, the proposed /spl Delta//spl Sigma/ modulators are relatively insensitive to feedback loop delays and can subsample. We present simulations of several types of these /spl Delta//spl Sigma/ modulators and examine the challenges in their design.  相似文献   

16.
A high-resolution multibit sigma-delta analog-to-digital converter (ADC) implemented in a 0.18-/spl mu/m CMOS technology is introduced. The circuit is targeted for an asymmetrical digital subscriber line (ADSL) central-office (CO) application . An area- and power-efficient realization of a second-order single-loop 3-bit modulator with an oversampling ratio of 96 is presented. The /spl Sigma//spl Delta/ modulator features an 85-dB dynamic range over a 300-kHz signal bandwidth. The measured power consumption of the ADC core is only 15 mW. An innovative biasing circuitry is introduced for the switched-capacitor integrators.  相似文献   

17.
Direct digital synthesis of signals in the hundreds of megahertz can lead to simpler, smaller transceivers, free of images and LO feedthrough that plague systems requiring analog upconversion. We present a 3-bit, 2 GS/s, /spl Delta//spl Sigma/-modulated DAC in InP HBT technology. The DAC is linearized using bandpass mismatch shaping. The mismatch shaper uses seven tunable 1.5-bit discrete-time bandpass /spl Delta//spl Sigma/ modulators to dynamically route the digital signals to the DACs. These /spl Delta//spl Sigma/ modulators operate in the analog domain to decrease system complexity and power consumption. The mismatch-shaped DAC can generate narrowband signals between 250-750 MHz with >68 dB SNR in a 1-MHz bw, >74-dB SFDR, and <-80-dBc intermodulation distortion with an 8.1-W power consumption.  相似文献   

18.
A scheme for achieving adaptive reduction in the order of the loop filter of usual high-order, single-stage, single-bit Delta-Sigma (/spl Delta//spl Sigma/) modulators is proposed in order to improve their performance. The resulting /spl Delta//spl Sigma/ modulators can recover from instability effectively, having also an extended input signal range in comparison to that of the corresponding conventional /spl Delta//spl Sigma/ modulators.  相似文献   

19.
A quadrature fourth-order, continuous-time, /spl Sigma//spl Delta/ modulator with 1.5-b quantizer and feedback digital-to-analog converter (DAC) for a universal mobile telecommunication system (UMTS) receiver chain is presented. It achieves a dynamic range of 70 dB in a 2-MHz bandwidth and the total harmonic distortion is -74 dB at full-scale input. When used in an integrated receiver for UMTS, the dynamic range of the modulator substantially reduces the need for analog automatic gain control and its tolerance of large out-of-band interference also permits the use of only first-order prefiltering. An IC including an I and Q /spl Sigma//spl Delta/ modulator, phase-locked loop, oscillator, and bandgap dissipates 11.5 mW at 1.8 V. The active area is 0.41 mm/sup 2/ in a 0.18-/spl mu/m 1-poly 5-metal CMOS technology.  相似文献   

20.
We present a tool that starting from high-level specifications of switched-capacitor (SC) /spl Sigma//spl Delta/ modulators calculates optimum specifications for their building blocks and then optimum sizes for the block schematics. At both design levels, optimization is performed using statistical techniques to enable global design and innovative heuristics for increased computer efficiency as compared with conventional statistical optimization. The tool uses an equation-based approach at the modulator level, a simulation-based approach at the cell level, and incorporates an advanced /spl Sigma//spl Delta/ behavioral simulator for monitoring and design space exploration. We include measurements taken from two silicon prototypes: (1) a 16 b @ 16 kHz output rate second-order /spl Sigma//spl Delta/ modulator; and (2) a 17 b @ 40 kHz output rate fourth-order /spl Sigma//spl Delta/ modulator. Both use SC fully differential circuits and were designed using the proposed tool and manufactured in a 1.2 /spl mu/m CMOS double-metal double-poly technology.<>  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号