首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
5228环氧树脂体系化学流变特性研究   总被引:2,自引:2,他引:2  
本文对5228环氧树脂体系的化学流变特性进行研究。采用DSC热分析技术和粘度测量手段,研究该树脂体系固化特性和固化过程中粘度与温度的关系,根据对等温和动态粘度曲线的分析,建立了工程恒温粘度模型,通过积分变换将模型推广到非恒温条件下使用,验证了所建立的粘度模型在工程中的准确性。所建立的工程粘度模型能有效地预测体系热压工艺的粘度变化和工艺窗口,具有工程实用性,为复合材料成型工艺模拟分析及工艺参数的确定奠定了基础。  相似文献   

2.
Heating mold and resin have been widely used in resin transfer molding (RTM) to improve injection and manufacturing efficiency. The unreasonable mold/resin temperatures sometimes lead to excessive viscosity of resin and premature curing, which will result in failure of the filling process. Selection of optimal mold and resin temperature has become a source of concern in the polymer industry. This article presents an optimization method to select mold and injection resin temperatures by using numerical simulation based on chemorheological and exothermal reaction of the RTM process. The results show that the optimization method has high computational efficiency for three-dimensional parts with different shapes. The selected mold/resin temperature ensures the smooth filling process, which provides a powerful tool for parameter design in polymer industry. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 48245.  相似文献   

3.
Presently, the mold and resin are heated to promote resin flow and shorten curing period in order to improve manufacturing efficiency of resin transfer molding (RTM). This nonisothermal manufacturing process easily generates three-dimensional thermal gradients in the direction of resin flow and thickness of composite part. However, the existing heating systems only consider the thermal gradients along thickness direction. The thermal gradients in direction of resin flow cannot be reduced which will lead to residual stress even deformation and cracking in composite part. This article aims at reducing the three-dimensional thermal gradients in the direction of resin flow and thickness of composite part. Based on the theory of energy and fluid flow, an optimization method of heating system design by using numerical simulation is proposed. The results show this method reduces the three-dimensional thermal gradients effectively in composite part manufactured by RTM process. This study can provide powerful tools for heating system design to manufacture composites products in polymer industry. © 2020 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48948.  相似文献   

4.
In general, a numerical scheme is a widely accepted technique for estimating resin flow in the liquid molding process. A numerical mold filling analysis is essential to optimize the manufacturing process of a composite. However, finding an optimal condition from the numerical analysis requires many numerical calculations. The efforts can be greatly reduced if a similarity solution replaces the repeated numerical calculations. In this study, similarity relations are proposed to predict the flow‐induced process variables. such as resin pressure, resin velocity, and flow front evolution time, during mold filling. Numerical simulations are performed for two cases where a material property, an injection condition or a part shape is different. The model is verified by applying the similarity relation for two numerical results obtained from the thin shell structure.  相似文献   

5.
针对复合材料真空辅助树脂浸渍模塑技术(SCRIMP)对树脂体系要求进行配方设计及性能测试。采用动态差示扫描量热(DSC)法,运用Kissinger动力学方程研究了基础树脂的固化反应动力学。通过添加QS-VA-3型原位分相型增韧剂,改善了基础树脂脆性,依据力学性能测试结果确定最佳添加量。对增韧环氧树脂体系进行等温/非等温黏度特性研究,确定了SCRIM P灌注成型过程的适用期,并使用该技术成型了增韧环氧树脂体系/单向玻璃纤维布复合材料试样,发现与玻璃纤维复合后具有强度高、界面性能好及低电压绝缘性能良好特点,但牺牲了高电压环境下绝缘性能。  相似文献   

6.
Non-isothermal mold filing and curing experiments of liquid composite molding were carried out in this work. To compare the experimental results with a previously developed numerical simulation model, measurements of volumetric heat transfer coefficient between the resin and the fiber, and characterization of resin kinetics and rheological changes were also conducted. Combined with the previously measured fiber perform permeability, the numerical model provided a good prediction of temperature profiles during molding for a polyurethane/glass fiber composite.  相似文献   

7.
Liquid composite molding (LCM) techniques are innovative manufacturing processes for processing fiber reinforced polymer parts used e.g. for aerospace structures. Thereby the reinforcing material is placed in a mold and infiltrated with a low viscosity polymer matrix. Increasing production rates as well as part complexity lead to high production risks such as air inclusions or incomplete mold filling. Numerical mold filling simulations are promising tools enabling the composite manufacturing engineer to detect dry spots in the mold and find the optimal positions of the resin entry and ventilation system at an early process development stage. Today, different numerical models and software packages are available for modeling the flow through the reinforcing structure for visualization of the flow behavior. The goal of this study is the systematic comparison of two different software packages, namely PAM‐RTM® and OpenFOAM. Both software tools are operated as they are commonly foreseen. Real world experiments under real process conditions are the basis for the assessment of the numerical predictions. The resin transfer molding (RTM) experiments are executed in a tool with a transparent upper mold half in order to see the flow front advancement. POLYM. COMPOS., 37:2782–2793, 2016. © 2015 Society of Plastics Engineers  相似文献   

8.
Liquid silicone rubber (LSR) is an elastomer molded into critical performance components for applications in medical, power, consumer, automotive, and aerospace applications. This article reviews process behavior, material modeling, and simulation of the (LSR) injection molding process. Each phase of the LSR injection molding process is discussed, including resin handling, plastication, injection, pack and hold, and curing; and factors affecting the molding process are reviewed. Processing behavior of LSR is marked by transient interactions between curing, shear rate, temperature, pressure, and tooling. Therefore, current LSR models for curing, viscosity, pressure, and temperature are discussed. Process dynamics and material modeling are combined in LSR injection molding simulations with applications in mold design, troubleshooting process-induced defects, and management of shear stress and non-uniform temperatures between LSR and substrates during overmolding. Finally, case studies using commercial simulation software are presented, which have shown cavity pressure and flow front advancement within 3% of experimental values. Optimization of LSR materials, data collection, model fitting, venting, and bonding remain areas of continued interest.  相似文献   

9.
利用差示扫描量热分析仪研究了一种快速固化环氧树脂体系的固化工艺参数,确定了以真空辅助树脂灌注工艺制备快速固化环氧树脂/碳纤维复合材料的成型方法,并与常规固化环氧树脂体系制备的碳纤维复合材料进行对比,采用傅里叶变换红外光谱仪对两种材料的树脂基体进行了分析,考察了两种复合材料的纤维含量、孔隙率及力学性能,最后通过扫描电子显微镜观察了快速固化树脂基体与碳纤维的界面结合性。结果表明,快速固化树脂在99℃下固化6 min后固化度可达96%,能够大幅缩减碳纤维复合材料的成型时间,以其制备的碳纤维复合材料拉伸强度比常规固化环氧树脂复合材料高11.20%,弯曲强度高16.92%,纵横剪切强度高7.44%,快速固化树脂与碳纤维界面结合性良好。  相似文献   

10.
The development of new composite product for an application through liquid composite molding (LCM) process simulation requires submodels describing the raw material characteristics. The viscosity during resin cure is the major submodel required for the effective simulation of mold-filling phase of LCM process. The viscosity of the resin system during mold filling changes as the cure reaction progresses. Applied process temperature also affects the viscosity of the resin system. Hence, a submodel describing the resin viscosity as a function of extent of cure and process temperature is required for the LCM process simulation. In this study, a correlation for viscosity during curing of medium reactive unsaturated polyester resin, which is mostly used for the LCM process, has been proposed as a function of temperature and degree of cure. The viscosity and the degree of cure of reacting resin system at different temperatures were measured by performing isothermal rheological and isothermal differential scanning calorimetry experiments, respectively. A nonlinear-regression analysis of viscosity and degree of cure data were performed to quantify the dependence of viscosity on temperature and extent of cure reaction. Comparisons of model solutions with our experimental data showed that the proposed empirical model is capable of capturing resin viscosity as a function of extent of cure and temperature qualitatively as well as quantitatively. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

11.
A review of current approaches in modeling and simulation of the resin transfer molding (RTM) process is presented. The processing technology of RTM is discussed and some available experimental techniques to monitor the process cycle are presented. A master model is proposed for the entire process cycle consisting of mold filling and curing stages. This master model contains the fundamental and constitutive sub‐models for both stages. The key elements of the master model discussed in this study are: flow, heat and mass balance equations for fundamental sub‐models, permeability, cure kinetics, resin viscosity and void formation for constitutive sub‐models. At the end, numerical methods widely used to simulate the filling process are presented and published simulation results of mold filling and process cycle are reviewed.  相似文献   

12.
树脂基复合材料成型工艺的发展   总被引:6,自引:0,他引:6  
叶长青  杨青芳 《粘接》2009,(5):66-70
树脂基复合材料具有质轻、力学性能优异等优点,在航天航空等领域逐步取代金属成为主要结构制件,并在民用领域得到了快速的发展.本文着重介绍树脂基复合材料的优点,缠绕、拉挤、液体模塑成型工艺的发展以及树脂体系固化工艺。  相似文献   

13.
The curing step in resin transfer molding process involves heat transfer coupled with the curing reaction of thermoset resin. In order to examine the curing behavior under a specified cure cycle in the resin transfer molding process, numerical simulations are carried out by three-dimensional finite elements method. An experimental study for isothermal cure kinetics of epoxy resin is conducted by using differential scanning calorimetry. Kinetic parameters based on the modified Kamal model are determined from the calorimetric data for the epoxy system, and by using these parameters, numerical simulations are performed for a hat-shaped mold. It is found from the simulation results that the temperature profile and the degree of cure are well predicted for the region inside the mold. This numerical study can provide a systematic tool in the curing process to find an optimum cure cycle and a uniform distribution of the degree of cure.  相似文献   

14.
对环氧树脂LT-5078体系进行了粘度-温度、粘度-时间测试,研究了其粘度特性,通过动态DSC法测定了树脂的固化反应热,并通过外推法得到其特征固化温度和成型工艺条件。实验表明,LT-5078的凝胶温度、固化温度、后处理温度分别为42℃、102℃、185℃,固化工艺为25℃×24 h+120℃×4 h。该树脂25℃时由初始粘度250 mPa.s上升到800 mPa.s所用时间为170 min左右,常温下有较长的低粘度时长,适合真空辅助RTM成型。  相似文献   

15.
Liquid composite molding (LCM) is a well‐established and flexible composite manufacturing technology capable of producing large parts at a relatively low cost. In this family of related injection processes, a large number of design variables have strong impact on manufacturing performance. The determination of adequate process parameters is key to yield successful molding conditions and reduce cycle time. In addition, properties and durability of composite parts are strongly affected by internal stresses. Excessive stress levels may lead to important defects in the part at the curing stage and after processing, when the part is cooled to room temperature. In this investigation, a comprehensive curing optimization algorithm is proposed to reduce internal stresses during composite processing. This study focuses on the minimization of the macroscopic residual stresses that appear during cure and cooling in thermoset composite laminates as a result of temperature and degree of cure gradients. The proposed fitness function to be minimized is based on the physics of the matrix material transformation and on the mechanical behavior of the composite material. An evolutionary strategy based on genetic algorithms (GA) is implemented for the minimization of the fitness function. Optimization is carried out for thin and thick glass/polyester laminated composites. Different optimization schemes with thermo‐elastic and viscoelastic models of the composite mechanical properties are studied. The advantages and drawbacks of each model are stated and discussed. POLYM. COMPOS., 26:209–230, 2005. © 2005 Society of Plastics Engineers  相似文献   

16.
热压罐/VARTM组合成型新工艺   总被引:1,自引:0,他引:1  
阐述了热压罐/VARTM组合技术提出的背景,介绍了国际上该项技术的发展现状,并根据该技术的原理提出了系统方案和设计思路;该项技术继承原有的工艺方法的优点,且设备改造投资少,特别适用于高粘度树脂的复合材料液体注射成型。  相似文献   

17.
Vinyl ester resin is a major thermoset polymer used in low‐temperature composite manufacturing processes such as the Seemann composite resin infusion‐molding process (SCRIMP). Volume shrinkage and residual styrene are important concerns for composites produced in such processes. A low‐shrinkage additive (LSA) is a typical agent added to control the volume shrinkage of vinyl ester resins during molding. In this study, the effects of LSA content and the temperature profile (the temperature gradient and peak temperature) on the volume shrinkage control of a vinyl ester resin were investigated. The reaction kinetics of the resin system were also studied. We achieved good volume shrinkage control if we raised the curing temperature slowly to allow sufficient time for phase separation and if the curing temperature reached a high value after phase separation to allow microvoid formation. On the basis of experimental results, we designed an improved SCRIMP to increase resin conversion, reduce resin shrinkage, and produce composites with better properties. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 1486–1496, 2003  相似文献   

18.
Monitoring the curing behavior of a thermosetting material is a key issue for ensuring a stable manufacturing process (e.g., injection molding). Dielectric analysis (DEA), which is applicable for online-monitoring, is used to investigate the curing behavior of a glass-fiber-reinforced epoxy molding compound. At first, the influences of experimental settings (pressure, temperature, and frequency) on dielectric responses (dielectric loss and ion viscosity) are characterized in a fully crosslinked material. Results show a significant impact of temperature and frequency on dielectric responses. Furthermore, DEA is combined with differential scanning calorimetry (DSC) to investigate dielectric properties depending on crosslink density under non-isothermal and isothermal conditions. The results show that DEA can detect cure changes only for a crosslink density <80%. Finally, reaction kinetics, which can predict the crosslink density, is derived using DSC and validated through DEA for determining the best suitable kinetic expression for the investigated material. The crosslink density, estimated by reaction kinetics, can be correlated with the dielectric properties.  相似文献   

19.
A novel soy‐based epoxy resin system was synthesized by the process of transesterification and epoxidation of regular soy bean oil, which has the potential to be widely usable in various composite manufacturing processes. Cure kinetics and rheology are two chemical properties commonly required in process modeling. In this work, the cure kinetics and rheology of the soy‐based resin system were measured by means of differential scanning calorimetry (DSC) and viscometer. DSC was used to measure the heat flow of dynamic and isothermal curing processes. The cure kinetics models of the different formulations were thus developed. A Brookfield viscometer was used to measure the change in viscosity under isothermal conditions. A novel neural network‐based model was developed to improve modeling accuracy. The models developed for cure kinetics and rheology for soy‐based epoxy resin system can be readily applied to composite processing. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 3168–3180, 2006  相似文献   

20.
Liquid composite molding (LCM) processes such as resin transfer molding (RTM) and vacuum assisted RTM (VARTM) are used to manufacture high quality and net‐shape fiber reinforced composite parts. All LCM processes impregnate fiber preforms packed in a mold cavity with a thermoset resin. After the preform is fully saturated, the injection is discontinued but the resin continues to cure. Once the curing step is complete, the part is de‐molded. The resin has to be mixed with a curing agent to cure. Typically, the resin and the curing agent are mixed together in a pressure pot before the injection. This has several disadvantages, such as storage of large amounts of hazardous polymerizing resin, wastage, and cleaning of cured resin from the injection line. This paper proposes the implementation and calibration of an alternative to this technique. The approach is to mix the curing agent with the resin as the resin enters the mold through a separate system featuring two feed‐lines. Such a system will enable one to maintain a uniform gel time throughout the part by varying the mixing ratio of resin and the catalyst during the injection. An experimental study of such on‐line mixing to obtain simultaneous curing and to reduce the overall curing time is conducted and presented in this paper. Implementation of a control scheme that varies the curing agent during injection and its effect on cure time is benchmarked with the process in which the percentage of curing agent is held constant. The gel time for the fabricated parts was reduced by 20–25% by continuously varying the percentage of curing agent during injection. POLYM. COMPOS., 26:74–83, 2005. © 2004 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号