首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The nano-Bi2O3 powders were prepared by a chemical precipitation method with Bi(NO3)3, HNO3 and NaOH as reactants. The structural characteristics and morphology of nano-Bi2O3 powders were investigated by X-ray diffraction and transmission electron microscopy, respectively. The results show that under the optimum condition that 300g/L Bi(NO3)3 reacts at 90℃ for 2 h, the Bi203 powders with 60 nm on the average and 99.5% in purity are obtained. The prepared nano-Bi2O3 powders contain a mixed crystal structure of monoclinic and triclinic instead of traditional structure of monoclinic α-Bi2O3. And the mixed crystal structure is stable in air. The reason for the appearance of the mixed crystal structure may be that the ionic radius ratio of Bi^3 to O^2- changes easily during the formation of nano-Bi2O3 particles by a chemical precipitation method.  相似文献   

2.
Growth units and the crystallization habit of BaTiO3 nanocrystals have been investigated. It has been proposed that the growth units of BaTiO3 were surface hydroxylated Ti(OH)62− octahedra. The relationship between crystal morphology and the variation of the current intensity in the solution has been obtained through the measurement of the OH in the solution and the hydrothermal experiment with superimposed direct electric field. Based on the computation of the stability energy of the growth units, the relationship between the crystallized morphology of crystallites and the most favorable growth units under different conditions has been derived. It has been found that there is structure similarity between anatase (TiO2) and BaTiO3 from the crystal chemistry viewpoint, so they are soluble in each other, which can serve as a reasonable explanation for the abnormal phenomenon of the retention of cubic substable phase at room temperature. Project supported by the National Natural Science Foundation of China.  相似文献   

3.
Preparation of AgSnO2 composite powders by hydrothermal process   总被引:2,自引:0,他引:2  
Silver-tin oxide powders were synthesized by the hydrothermal method with Ag(NH3)2^+ solution and Na2SnO3 solution as raw materials and Na2SO3 as reductant. The precipitation conditions of Na2SnO3 solution and the reduction conditions of Ag(NH3)2^+ were also investigated. The powders prepared were characterized by differential thermal analysis (DTA), X-ray diffraction analysis (XRD), scanning electron microscope (SEM) and energy spectrum analysis, The results show that pH value of the solution is a key parameter in the formation of Sn(OH)4 precipitate and the reduction reaction of Ag(NH3)2^+ can release H^+ ions, which results in synchronous precipitation of Sn(OH)6^2- as Sn(OH)4. The reduction of Ag(NH3)2^+ and precipitation of Na2SnO3 occur simultaneously and the coprecipitation of silver and tin oxide is reached by the hydrothermal method. The silver-tin oxide composite powders have mainly flake shape of about 0.3 μm in thickness and there exists homogeneous distribution of tin oxide and silver in the powder synthesized.  相似文献   

4.
Cd(S1-xSex) pigments (red to yellow) were synthesized by precipitate-hydrothermal method. The structure, morphology and hue of the powder were characterized by X-ray diffractometry (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDAX) and CIE chromaticity. The optimum synthesis conditions were obtained and reaction mechanism was further analyzed as well. The results show that molar ratio of S to Se, pH value and hydrothermal reaction conditions have great effects on the hues of the pigments. Pigments with vivid hues are obtained under the conditions that pH value is about 13.0, hydrothermal reaction condition is at 140 ℃ for 4 h or at 160 ℃ for 6 h. The reaction mechanism is that Se^2- of Cd(S1-xSex) substitutes S^2- of CdS and then forms a continuous solid solution.  相似文献   

5.
Roman scattering measurement of ( 1 - x ) GeS2-x Ga2S3 system glasses was conducted in order to understand the microstructural change caused by the addition of Ga2S3 . According to the change of Raman spectra with the addition of Ga2S3, two main structural transformations were deduced : the gradual enhancement of ethane- like structural units S3 Ge- GeS3 ( 250 cm ^- 1) and S3 Ga- GaS3 (270 cm ^- 1 ) and the appearance of charge imbalanced units [ Ga2 S2 ( S1/2 )4 ]^2- and [Ga( S1/2 )4 ]^- . And this change of structural aspect seems to give as a clue to understanding the cause of the increased rare-earth solubility.  相似文献   

6.
Poly ethylene oxide (PEO)x−V2O5−V2O5−MoO3 (x=0, 0.5, 1) films were prepared by the sol-gel method. The synthesis and structure of the films were investigated by XRD, TG-DTA, FTIR, etc. The results show that V2O5−MoO3 xerogel has a layered structure and its interlayer space increased from 1.3181 nm at x=0 to 1. 7898 nm at x=1 after the nanocomposite films were dried, and PEO in the interlayer changes the interface structure by forming hydrogen bonds with V=0 bands. CV measurement indicates that the intercalation of PEO improves insertion/extration properties of Li+ ions in the interlayer. ZHENG Jin-xia: Born in 1976 Funded by the National Natural Science Foundation of China (No. 50172036) and Natural Science Foundation of Hubei Province(No. 2001ABB083)  相似文献   

7.
Density function theory and discrete variation method (DFT-DVM) were used to study the adsorption of [Au( AsS3 )]^2- on the surface of kaolinite. The correlation among structure, chemical bond and stability was discussed. Several models were selected with [ Au( AsS3)]^2- in different directions and sites. The results show that the models with gold on the edge of kaolinite basal layer contain pincerlike bond among gold and several oxygen atoms and form strong Au - 0 covalent bond, so these models are more stable than those with gold above or under the layer. The models with gold near to [ AlO2(OH)4] octahedra are more stable than those with gold near to the vacancy withont aluminium. These two stable tendencies in kaolinite- [ Au( AsS3)]^2- are stronger than that in kaolinite-Au systems. The interaction between [ Au( AsS3 )]^2- and kaolinite is stronger than that between gold and kaolinite, and this interaction is strong enough to form the surface complexes.  相似文献   

8.
In order to obtain a new precursor for LiFePO4, Fe2P2O7 with high purity was prepared through solid phase reaction at 650 ℃ using starting materials of FeC2O4 and NH4H2PO4 in an argon atmosphere. Using the as-prepared Fe2P2O7, Li2CO3 and glucose as raw materials, pure LiFePO4 and LiFePO4/C composite materials were respectively synthesized by solid state reaction at 700 ℃ in an argon atmosphere. X-ray diffractometry and scanning electron microscopy(SEM) were employed to characterize the as-prepared Fe2P2O7, LiFePO4 and LiFePO4/C. The as-prepared Fe2P2O7 crystallizes in the Cl space group and belongs to β-Fe2P2O7 for crystal phase. The particle size distribution of Fe2P2O7 observed by SEM is 0.4-3.0 μm. During the Li^+ ion chemical intercalation, radical P2O7^4- is disrupted into two PO4^3- ions in the presence of O^2-, thus providing a feasible technique to dispose this poor dissolvable pyrophosphate. LiFePO4/C composite exhibits initial charge and discharge capacities of 154 and 132 mA·h/g, respectively.  相似文献   

9.
The cathodic deposition properties and mechanism of Zn in alkaline zincate solution were studied by electrochemical techniques. The results show that Zn2 exists in the alkaline solution in the form of Zn(OH)42-. The apparent activation energy of the electrode reaction is 38.93 kJ/mol, which indicates that the discharge of Zn(OH)42- on cathode is controlled by electrochemical polarization, and accompanied by a preceding chemical reaction. The diffusion coefficient of Zn(OH)42- is 2.452×10-6 cm2/s. Zn(OH)2 is the species directly discharged on the cathode surface. Based on the above results the mechanism of zinc electroplating in alkaline zincate solution was put forward. The discharged species is Zn(OH)2 formed from the preceding chemical reaction, which becomes Zn(OH)ad when gaining one electron, and then gaining the second electron to become Zn. The first electron gaining step is rate determining one.  相似文献   

10.
Spherical Ni(OH)2 particles were prepared by an aqueous solution precipitation route. The structure of spherical Ni(OH)2 was investigated by scanning electron microscopy and transmission electron microscopy and compared with that of traditional Ni(OH)2. The results show that the spherical nickel hydroxide consists of Ni(OH)2 spheres with a reticulate structure of platelet-like, which is almost arranged radially and the crystalline grains intervene and connect with each other to form a three-dimensional net. The spherical Ni(OH)2 particle is full of pores,crannies between cleave planes. It is supposed that this structure is beneficial to the structural stability for the spherical particles during the charge/discharge processes and can improve the cycle life of the electrode; the pores and the crannies in spherical particles can shorten the proton diffusion distance and speed its velocity, which may result in that the local polarization is lowered. The electrochemical performances of the spherical Ni(OH)2 are improved by enhancing the conducting properties of the crystalline lattice due to its quick proton diffusion.  相似文献   

11.
4.25Cu-0.75Ni/NiFe2O4 cermets were prepared by doping NiFe2O4 ceramic matrix with the mixed powders of Cu and Ni or Cu-Ni alloy powder as the electrical conducting metallic elements. The effects of technological parameters, such as the adding modes of metallic elements, the ball milling time, the sintering time and the sintering temperature, on the relative density and resistivity of the cermets were studied. The results show that the resistivity of 4.25Cu-0.75Ni/NiFe2O4 cermets decreases with increasing temperature, and has a turning point at 590 °C, which is similar to that of NiFe2O4 ceramic. The sintering temperature and adding modes of metallic elements have a great influence on the properties of 4.25Cu-0.75Ni/NiFe2O4 cermets. When the sintering temperature increases from 1200 °C to 1300 °C, the relative density increases from 89.86% to 95.33%, and the resistivity at 960 °C decreases from 0.11 Ω · cm to 0.03 Ω · cm, respectively. When the metallic elements are added with the mixed powders of Cu and Ni, the cermets of finely and uniformly dispersed metallic phase, high density and electric conductivity are obtained. The relative density and resistivity at 960 °C are 90.23% and 0.04 Ω · cm respectively for the cermet samples sintered at 1200 °C for 2 h, which are both better than those of the cermets prepared under the same technique conditions but with the metallic elements added as 85Cu-15Ni alloy powders. Foundation item: Project (G1999064903) supported by the National Key Fundamental Research and Development Program of China; project(2001AA335013) supported by the National High Technology Research and Development Program of China; project (50204014) supported by the National Natural Science Foundation of China  相似文献   

12.
1 INTRODRCTIONWithregardtothestudyofcrystalgrowthunits,researchersmainlyconcentrateonthedissolutionofsolute ,theformationofgrowthunitsandthetransportationofthecrystalgrowthunittotheinterface ,aswellasthecongruencyofthegrowthunitsontheinter facesofthecry…  相似文献   

13.
Ag-TiO2 thin films were prepared on glasses.The morphology and structure of Ag-TiO2 films were investigated by XRD.SEM and FT-IR.The photocatalytic and hydrophilic properties of Ag-TiO2 thin films were also evaluated by examining photocatalytic degradation dichlorophos under sunlight illumination and the change of contact angle respectively.The research results show that the Ag-TiO2 thin film is mainly composed of 20-100nm Ag and TiO2 particles,The Ag-TiO2 thin films possess a super-hydrophilic ability and higher photocatalytic activity than that of pure TiO2 thin film.  相似文献   

14.
The AAAc(1 : 1) was synthesized in water by As2O3 and Sb2O3 with molar ratio of 1 : 1. AAAc(1 : 1) was characterized by Raman, IR, TG/DTG, DSC, XPS and XRD. The results show that there are four peaks to v s of As-OH, As-O-Sb, Sb-OH and Sb-O-Sb in Raman spectra of AAAc(1 : 1) at 100 – 1 000 cm−1. The solution of AAAc(1 : 1) was also titrated with KOH solution. The titration results show that AAAc(1 : 1) is a hexabasic acid with dissociation constants of k 1=3.62 × 10−2, k 2=3.05 × 10−3, k 3=6.43 × 10−6, k 4 =9.78 × 10−8, k 5=1.32 × 10−11, k 6=3.87 × 10−12. AAAc(1 : 1) has a good solubility and stability in water, its solid obtained by free volatilizing water from its solution under air at ambient temperature is amorphous. Chemical and thermal analysis show that the composition of AAAc(1 : 1) is As2O5 · Sb2O5 · 8H2O in air at 25 °C. AAAc(1 : 1) has the structure of AsO(OH)2-OH-Sb(OH)4-O-Sb(OH)4-OH-AsO(OH)2 or As(OH)3-O-Sb(OH)4-O-Sb(OH)4-O-As(OH)3 (isomerism) through experimental determination and geometry optimization. Foundation item: Project(50274075) supported by the National Natural Science Foundation of China  相似文献   

15.
1 INTRODUCTIONThere are many disadvantages in the presentaluminumelectrolysis with carbon anode ,such assevere energy consumption,carbon wasting,envi-ronmental pollution and so on.Inert electrode sys-tem can overcome these disadvantages[1 3]. Re-cently ,the researches of the inert anode materialshave mainly been concentrated on alloys[4]and cer-met materials[5 ,6]. NiFe2O4based cermets , whichpossess not only high electrical conductivity ofmetal but also good corrosion resistance of cera…  相似文献   

16.
(PEO)8LiClO4-SiO2 composite polymer electrolytes(CPEs) were prepared by in-situ reaction, in which ethyl-orthosilicate (TEOS) was catalyzed by HCl and NH3·H2O, respectively. The ionic conductivity, the contact angle and the morphology of inorganic particles in the CPEs were investigated by AC impedance spectra, contact angle method and TEM. The conductivities of acid-catalyzed CPE and alkali-catalyzed CPE are 2.2×10^-5 and 1.1×10^-5 S/cm respectively at 30 ℃. The results imply that the catalyst plays an important role in the structure of in-situ preparation of SiO2, and influences the surface energy and conductivity of CPE films directly. Meanwhile, the ionic conductivity is related to the surface energy.  相似文献   

17.
1 INTRODUCTIONGoldisquitestableanddifficulttodissolveinacommonmineralacid .However ,becausethereisadelectroniclayerunfilledingoldatomicstructure ,goldcanbecombinedwithmanychemicalagentstoformstablecomplexions,causingthepotentialofgoldinasolutiontodecreaseandgoldtodissolveinthesolutioneasily .Basedonthisprinciple ,cyanideisanefficientlixiviatingagentofgold ,andhasbeenwidelyusedtoextractgoldfrom primaryandsecondaryresources .However ,itisthemosttoxicandnotbeneficialtoen vironmentprotection…  相似文献   

18.
Preparation of ITO nano-powders by hydrothermal-calcining process   总被引:4,自引:0,他引:4  
1 INTRODUCTIONSn-doped In2O3(ITO) is one kind of n-typesemiconductor material[1].It has excellent electro-optical properties , such as electrical conductivityand high transparency under visible light[2],andiswidely used in electronic , transparent electrode ,solar cells and electro-irradiance , especially inscreen display[3 ,4].Recently nearly half of the met-al indium has been used to prepare ITO materialsin the developed countries[5], such as Japan, A-merica ,France and so on.So the…  相似文献   

19.
Highly pure active γ-Al2O3 nanoparticles were synthesized from aluminum nitrate and ammonium carbonate with a little surfactant by chemical precipitation method. The factors affecting the synthesis process were studied. The properties of γ-Al2O3 nanoparticles were characterized by DTA, XRD, BET, TEM, laser granularity analysis and impurity content analysis. The results show that the amorphous precursor Al(OH)3 sols are produced by using 0.1 mol/L Al(NO3)3 · 9H2O and 0.16 mol/L (NH4)2CO3 · H2O reaction solutions, according to the volume ratio 1.33, adding 0.024% (volume fraction) surfactant PEG600, and reacting at 40 °C, 1 000 r/min stirring rate for 15 min. Then, after stabilizing for 24 h, the precursors were extracted and filtrated by vacuum, washed thoroughly with deionized water and dehydrated ethanol, dried in vacuum at 80°C for 8 h, final calcined at 800 °C for 1 h in the air, and high purity active γ-Al2O3 nanoparticles can be prepared with cubic in crystal system, O H 7 -FD3M in space group, about 9 nm in crystal grain size, about 20 nm in particle size and uniform size distribution, 131. 35 m2/g in BET specific surface area, 7 – 11 nm in pore diameter, and not lower than 99.93% in purity. Foundation item: Project(03JJY3015) supported by the Natural Science Foundation of Hunan Province  相似文献   

20.
Granular CuO-CeO2-MnO x /γ-Al2O3 catalysts were synthesized by the sol-gel method. The performance of the CuO-CeO2-MnO x /γ-Al2O3 catalysts for the selective catalytic reduction (SCR) was studied in a fixed bed system. Preliminary tests were carried out to analyze the behavior of NH3 and NO over catalyst in the presence of oxygen. The optimum temperature range for SCR over the CuO-CeO2-MnO x /γ-Al2O3 catalysts is 300–400 °C. The catalysts maintain nearly 100% NO conversion at 350 °C. The °C NH3 oxidation experiments show that both NO and N2O are produced gradually with the increase of temperature. The catalysts in this experiment have a stronger oxidation property on NH3, which improves the denitrification activity at low temperature. The over-oxidation of NH3 at high temperature is the main cause leading to a decrease in the NO conversion. The NH3 and NO desorption experiments show that NH3 and NO can be adsorbed on CuO-CeO2-MnO x /γ-Al2O3 granular catalysts. The transient response of NH3 and NO indicates that the SCR reaction proceeds in accordance with the Eley-Rideal mechanism. The adsorbed NO has little influence on the denitrification activity in SCR process. Foundation item: Projects (50776037, 50721005) supported by the National Natural Science Foundation of China  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号