首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Continuous-wave (CW) lasing operation with a very low threshold current density (Jth=32.5 A/cm2) has been achieved at room temperature by a ridge waveguide quantum-dot (QD) laser containing a single InAs QD layer embedded within a strained InGaAs quantum well (dot-in-well, or DWELL structure). Lasing proceeds via the QD ground state with an emission wavelength of 1.25 μm when the cavity length is longer than 4.2 mm. For a 5-mm long QD laser, CW lasing has been achieved at temperatures as high as 40°C, with a characteristic temperature T0 of 41 K near room temperature. Lasers with a 20 μm stripe width have a differential slope efficiency of 32% and peak output power of >10 mW per facet (uncoated)  相似文献   

2.
In this paper, a theoretical model is used to investigate the lasing spectrum properties of InAs–InP(113)B quantum dot (QD) lasers emitting at 1.55 $mu$m. The numerical model is based on a multipopulation rate equations analysis. Calculations take into account the QD size dispersion as well as the temperature dependence through both the inhomogeneous and the homogeneous broadenings. This paper demonstrates that the model is capable of reproducing the spectral behavior of InAs–InP QD lasers. Especially, this study aims to highlight the transition of the lasing wavelength from the ground state (GS) to the excited state (ES). In order to understand how the QD laser turns on, calculated optical spectra are determined for different cavity lengths and compared to experimental ones. Unlike InAs–GaAs QD lasers emitting at 1.3 $mu$m, it is shown that a continuous transition from the GS to the ES is exhibited because of the large inhomogeneous broadening comparable to the GS and ES lasing energy difference.   相似文献   

3.
Data are presented on the temperature dependence of 1.3-μm wavelength quantum-dot (QD) lasers. A low-threshold current density of 90 A/cm2 is achieved at room temperature using high reflectivity coatings. Despite the low-threshold current density, lasing at the higher temperatures is limited by nonradiative recombination with a rapid increase in threshold current occurring above ~225 K. Our results suggest that very low threshold current density (⩽20 A/cm 2) can be achieved at room temperature from 1.3-μm QD lasers, once nonradiative recombination is eliminated  相似文献   

4.
A study of the threshold characteristics of quantum-dot (QD) laser diodes shows how inhomogeneous broadening and p-doping influence the QD laser's temperature dependence of threshold T 0. The analysis includes the additional parameters of homogeneous broadening, quantum state populations, and threshold gain. The results show that while the source of negative T 0 can occur due to different effects, the transparency current plays a critical role in both undoped and p-doped QD lasers. Experimental trends of negative T 0 and their dependence on p-doping are replicated in the calculated results. Inhomogeneous broadening is found to play a lesser role to the transparency current in setting T 0. Homogeneous broadening is most important for uniform QDs with thermally isolated ground-state transitions.  相似文献   

5.
The temperature dependence of the threshold current for InGaAlP visible-light laser diodes was investigated from the standpoint of gain-current characteristics. The dependence of the light output power versus the current characteristic on the cavity length was evaluated for a 40-μm-wide InGaP-InGaAlP broad-stripe laser in the temperature range between -70 and 90°C. The threshold-current density dependence on the cavity length shows that a linear-gain approximation is suitable for this system. A minimum threshold-current density of 860 A/cm2 was achieved at room temperature with a cavity length of 1160 μm. The internal quantum efficiency decreased in the temperature range higher than -10°C, which affected the excess threshold-current increase and the decrease in the characteristic temperature at this temperature range  相似文献   

6.
This paper presents the lasing properties and their temperature dependence for 1.3-μm semiconductor lasers involving self-assembled InGaAs-GaAs quantum dots as the active region. High-density 1.3-μm emission dots were successfully grown by the combination of low-rate growth and InGaAs-layer overgrowth using molecular beam epitaxy. 1.3-μm ground-level CW lasing occurring at a low threshold current of 5.4 mA at 25°C with a realistic cavity length of 300 μm and high-reflectivity coatings on both facets. The internal loss of the lasers was evaluated to be about 1.2 cm-1 from the inclination of the plots between the external quantum efficiency and the cavity length. The ground-level modal gain per dot layer was evaluated to be 1.0 cm-1, which closely agreed with the calculation taking into account the dot density, inhomogeneous broadening, and homogeneous broadening. The characteristic temperature of threshold currents T0 was found to depend on cavity length and the number of dot layers in the active region of the lasers. A T0 of 82 K was obtained near room temperature, and spontaneous emission intensity as a function of injection current indicated that the nonradiative channel degraded the temperature characteristics. A low-temperature study suggested that an infinite T0 with a low threshold current (~1 mA) is available if the nonradiative recombination process is eliminated. The investigation in this paper asserted that the improvement in surface density and radiative efficiency of quantum dots is a key to the evolution of 1.3-μm quantum-dot lasers  相似文献   

7.
We propose a genuinely temperature-insensitive quantum dot (QD) laser. Our approach is based on direct injection of carriers into the QDs, resulting in a strong depletion of minority carriers in the regions outside the QDs. Recombination in these regions, which is the dominant source of the temperature dependence, is thereby suppressed, raising the characteristic temperature T0 above 1500 K. Still further enhancement of T0 results from the resonant nature of tunneling injection, which reduces the inhomogeneous line broadening by selectively cutting off the nonlasing QDs  相似文献   

8.
9.
The temperature dependence of differential gain dG/dn for 1.3-μm InGaAsP-InP FP and DFB lasers with two profiles of p-doping was obtained from RIN measurements within the temperature range of 25°C-65°C. Experiments showed that the change of the active region doping level from 3·1017 cm-3 to 3·1018 cm-3 leads to a 50% increase of the differential gain for FP lasers at 25°C. Heavily doped devices also exhibit more rapid reduction of the differential gain with increasing temperature. The effect of active region doping on the energy separation between the electron Fermi level and electronic states coupled into the laser mode explains the observations. The temperature dependence of differential gain for DFB devices strongly depends on the detuning of the lasing wavelength from the gain peak  相似文献   

10.
We have calculated radiative and Auger recombination rates due to localized recombination in individual dots, for an ensemble of 106 dots with carriers occupying the inhomogeneous distribution of energy states according to global Fermi-Dirac statistics. The recombination rates cannot be represented by simple power laws, though the Auger rate has a stronger dependence on the ensemble electron population than radiative recombination. Using single-dot recombination probabilities which are independent of temperature, the ensemble recombination rates and modal gain decrease with increasing temperature at fixed population. The net effect is that the threshold current density increases with increasing temperature due to the increase in threshold carrier density. The most significant consequence of these effects is that the temperature dependence of the Auger recombination rate at threshold is much weaker than in quantum wells, being characterized by a T0 value of about 325 K. Observations of a strong temperature dependence of threshold in quantum dot lasers may have explanations other than Auger recombination, such as recombination from higher lying states, or carrier leakage.  相似文献   

11.
The Hooge 1/f fluctuation parameter αH of a mesoscopic n-GaAs filament is studied experimentally and compared with that derived from the quantum model. The minimum value of the Hooge parameter αH was 2×10-6 and 1×10 -8 at room temperature and 60 K, respectively. The temperature dependence of αH below 100 K and the electric field dependence at 77 K are favorably compared with those obtained for the impurity scattering fluctuation of the quantum 1/f noise theory  相似文献   

12.
A range of prototype fiber-optic-based Fizeau interferometric pressure sensors with temperature compensation and signal recovery by dual-wavelength coherence reading have been developed. A separate fiber-optic-based Fizeau temperature sensor with similar cavity length was incorporated into the pressure sensor to allow the pressure measurement to be corrected for the temperature dependence of the pressure probe. The pressure and temperature probes were multiplexed spatially. For the low-pressure sensor, the obtained range to resolution ratio and the accuracy were ~6.7×103:1 and better than ±1 percent over a pressure range of 0-0.48 bar, respectively. For the medium pressure sensor, the achieved range to resolution ratio and the overall accuracy were 3.6×104:1 and ±0.15 percent over a full-pressure range of ~10 bar. For the high pressure sensor, a range to resolute ratio of ~1.67×104:1 and an overall measurement accuracy of ±0.69 percent over a pressure range of ~1000 bar have been achieved. Due to the universality of the signal-processing scheme based on the dual-wavelength coherence-reading technique, the signal-processing box can be compatible with a range of sensors illuminated by the sources with similar central wavelengths. This study would be readily used to develop a range of commercial fiber-optic pressure sensors with similar optical path differences, interrogated by a universal signal-processing box, for different applications  相似文献   

13.
We have fabricated 1.3-$mu$ m InAs–GaAs quantum-dot (QD) lasers with and without p-type modulation doping and their characteristics have been investigated. We find that introducing p-type doping in active regions can improve the temperature stability of 1.3-$mu$ m InAs–GaAs QD lasers, but it does not increase the saturation modal gain of the QD lasers. The saturation modal gain obtained from the two types of lasers is identical (17.5 cm$^{-1}$ ). Moreover, the characteristic temperature increases as cavity length increases for the two types of lasers, and it improves more significantly for the lasers with p-type doping due to their higher gain.   相似文献   

14.
The formation of n-p junctions by ion-implantation in Hg0.71Cd0.29Te is shown to be a result of implantation damage. n-p photodiodes have been made by implantation of Ar, B, Al, and P in a p-type substrate with acceptor concentration of 4 × 1016cm-3. The implanted n-type layer is characterized by sheet electron concentration of 1014to 1015cm-2and electron mobility higher than 103cm2. V-1. s-1, for ion doses in the range 1013-5 × 1014cm-2. The photodiodes have a spectral cutoff of 5.2 µm, quantum efficiency higher than 80 percent, and differential resistance by area product above 2000 Ω . cm2at 77 K. The temperature dependence of the differential resistance is discussed. The junction capacitance dependence on reverse voltage fits a linearly graded junction model. Reverse current characteristics at 77 K have been investigated using gate-controlled diodes. The results suggest that reverse breakdown is dominated by interband tunneling in field-induced junctions at the surface, for both polarities of surface potential.  相似文献   

15.
Spectroscopic data and laser oscillation characteristics of the 1.317 μ line in lithium neodymium tetraphosphate (LNP) are reported. A stimulated emission cross section of this transition was spectroscopically determined as7.1 times 10^{-20}cm2, which corresponds to 1/4.5 of that at the 1.047-μm transition. Cross-section temperature dependence, laser cavity loss, threshold versus crystal length, and threshold temperature dependence were measured experimentally. Since resonant loss was negligible at the 1.317 μm line, room temperature threshold is lower than that at 1.047-μm in the case of long crystal, and threshold temperature dependence is weaker than that at 1.047 μm. A miniaturized LNP laser, using a graded index fiber as a focusing medium, is also shown. LED pump intensity required to obtain a constant output is compared for 1.047- and 1.317-μm wavelengths. The 1.317-μm line seems to be useful as miniaturized optical sources in optical communication systems, since required intensity is around several W/cm2for the side pump, and the wavelength corresponds to the most transparent band of ultra low-loss optical fibers.  相似文献   

16.
The first room-temperature continuous-wave (CW) operation of the double heterostructure optoelectronic switching laser implemented as a vertical-cavity laser is described. A deposited dielectric top reflector of SiO2/TiO2 allowed the use of a cavity etch back technique after the sample was grown, to position the cavity mode at the desired wavelength. Room temperature CW threshold currents as low as 4.8 mA for a 14-μm-diameter device were obtained with slope efficiencies of 0.45 mW/mA. The maximum CW output power was 2.5 mW and the resistivity was 4×10-4 Ωcm2  相似文献   

17.
The first self-assembled InAs quantum dash lasers grown by molecular beam epitaxy on InP (001) substrates are reported. Pulsed room-temperature operation demonstrates wavelengths from 1.60 to 1.66 μm for one-, three-, and five-stack designs, a threshold current density as low as 410 A/cm2 for single-stack uncoated lasers, and a distinctly quantum-wire-like dependence of the threshold current on the laser cavity orientation. The maximal modal gains for lasing in the ground-state with the cavity perpendicular to the dash direction are determined to be 15 cm-1 for single-stack and 22 cm-1 for five-stack lasers  相似文献   

18.
The influence of a thermal boundary resistance (TBR) on temperature distribution in ungated AlGaN/GaN field-effect devices was investigated using 3-D micro-Raman thermography. The temperature distribution in operating AlGaN/GaN devices on SiC, sapphire, and Si substrates was used to determine values for the TBR by comparing experimental results to finite-difference thermal simulations. While the measured TBR of about 3.3 x 10-8 W-1 ldr m2 ldr K for devices on SiC and Si substrates has a sizeable effect on the self-heating in devices, the TBR of up to 1.2 x 10-8 W-1 ldr m2 ldr K plays an insignificant role in devices on sapphire substrates due to the low thermal conductivity of the substrate. The determined effective TBR was found to increase with temperature at the GaN/SiC interface from 3.3 x 10-8 W-1 ldr m2 ldr K at 150degC to 6.5 x 3.3 x 10-8 W-1 ldr m2 ldr K at 275degC, respectively. The contribution of a low-thermal-conductivity GaN layer at the GaN/substrate interface toward the effective TBR in devices and its temperature dependence are also discussed.  相似文献   

19.
Self-assembled InAs quantum-dash (QD) lasers with emission wavelengths between 1.54 and 1.78 μm based on the AlGaInAs-AlInAs-InP material system were grown by gas source molecular beam epitaxy. Threshold current densities below 1 kA/cm2 were achieved for 1-mm-long mirror coated broad area lasers with a stack of four QD layers. The devices can be operated up to 80°C in pulsed mode and show a high T0 value of 84 K up to 35°C. In comparison to quantum-well lasers a much lower temperature sensitivity of the emission wavelength was achieved. The temperature shift of Δλ/ΔT = 0.12 nm/K is as low as that caused by the refractive index change  相似文献   

20.
The nonlinear optical characteristics of AgGaS2 were investigated by measuring visible parametric fluorescence with a pump wavelength of 600 nm. A value of d36 [AgGaS2 ]=31±5×10-12 m/V for the nonlinear coefficient was determined. The temperature dependence of phase matching up to 100°C was studied. A significant temperature effect, although much smaller than for LiNbO3, was found and results in a change in the infrared difference frequency generated of ~0.6 cm-1 -°C-1  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号