首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
One of the most well-known binary (discrete) versions of the artificial bee colony algorithm is the similarity measure based discrete artificial bee colony, which was first proposed to deal with the uncapacited facility location (UFLP) problem. The discrete artificial bee colony simply depends on measuring the similarity between the binary vectors through Jaccard coefficient. Although it is accepted as one of the simple, novel and efficient binary variant of the artificial bee colony, the applied mechanism for generating new solutions concerning to the information of similarity between the solutions only consider one similarity case i.e. it does not handle all similarity cases. To cover this issue, new solution generation mechanism of the discrete artificial bee colony is enhanced using all similarity cases through the genetically inspired components. Furthermore, the superiority of the proposed algorithm is demonstrated by comparing it with the basic discrete artificial bee colony, binary particle swarm optimization, genetic algorithm in dynamic (automatic) clustering, in which the number of clusters is determined automatically i.e. it does not need to be specified in contrast to the classical techniques. Not only evolutionary computation based algorithms, but also classical approaches such as fuzzy C-means and K-means are employed to put forward the effectiveness of the proposed approach in clustering. The obtained results indicate that the discrete artificial bee colony with the enhanced solution generator component is able to reach more valuable solutions than the other algorithms in dynamic clustering, which is strongly accepted as one of the most difficult NP-hard problem by researchers.  相似文献   

2.
The artificial bee colony (ABC) algorithm, inspired intelligent behaviors of real honey bee colonies, was introduced by Karabo?a for numerical function optimization. The basic ABC has high performance and accuracy, if the solution space of the problem is continuous. But when the solution space of the problem is discrete, the basic ABC algorithm should be modified to solve this class optimization problem. In this study, we focused on analysis of discrete ABC with neighborhood operator for well-known traveling salesman problem and different discrete neighborhood operators are replaced with solution updating equations of the basic ABC. Experimental computations show that the promising results are obtained by the discrete version of the basic ABC and which neighborhood operator is better than the others. Also, the results obtained by discrete ABC were enriched with 2- and 3-opt heuristic approaches in order to increase quality of the solutions.  相似文献   

3.
The artificial bee colony has the advantage of employing fewer control parameters compared with other population-based optimization algorithms. In this paper a binary artificial bee colony (BABC) algorithm is developed for binary integer job scheduling problems in grid computing. We further propose an efficient binary artificial bee colony extension of BABC that incorporates a flexible ranking strategy (FRS) to improve the balance between exploration and exploitation. The FRS is introduced to generate and use new solutions for diversified search in early generations and to speed up convergence in latter generations. Two variants are introduced to minimize the makepsan. In the first a fixed number of best solutions is employed with the FRS while in the second the number of the best solutions is reduced with each new generation. Simulation results for benchmark job scheduling problems show that the performance of our proposed methods is better than those alternatives such as genetic algorithms, simulated annealing and particle swarm optimization.  相似文献   

4.
This paper investigates a multi-objective green co-scheduling problem of ship lift and ship lock (GCP-SL&SL) at the Three Gorges Cascade Hub (TGCH). A mathematical model of GCP-SL&SL with objectives of the average utilizations rate of the lock chamber, average waiting time and total energy consumption of vessels, is proposed by separating it into three sub-problems: the facility assignment, lockage assignment and lockage operation scheduling. To solve this problem, a discrete multi-objective artificial bee colony (DMOABC) algorithm is developed. Within the DMOABC, a two-dimensional matrix encoding scheme is designed to encode and a group right-shift decoding scheme is specifically proposed to decode each food source. Then, a novel fitness evaluation mechanism based on fuzzy relative entropy is introduced to hand this multi-objective problem. Next, the food sources are improved from three aspects: (1) the employed bee phase uses new evolutionary operators for fast local search; (2) the onlooker bee phase adopts a modified tabu search for strong global search; (3) the scout bee phase embeds chemical reaction optimization for disturbing population. Finally, extensive experiments are conducted with the real data from historical traffic at TGCH. The results demonstrate our proposed algorithm is significantly better at solving the GCP-SL&SL than other five well-known multi-objective algorithms. The effect analysis under different scenarios indicates that the average waiting time of vessels at the dam is greatly reduced because of considering the synchronous moving process.  相似文献   

5.
Recently, optimization makes an important role in our day-to-day life. Evolutionary and population-based optimization algorithms are widely employed in several of engineering areas. The design of an optimization algorithm is a challenging endeavor caused of physical phenomena in order to obtain appropriate local and global search operators. Generally, local operators are fast. In contrast, global operators are used to find best solution in the search space; therefore they are slower compare to the local ones. The best review-knowledge of papers show that there are many optimization algorithms such as genetic algorithm, particle swarm optimization, artificial bee colony and etc in the engineering as a powerful tools. However, there is not a comprehensive review for theirs topologies and performance; therefore, the main goal of this paper is filling of this scientific gap. Moreover, several aspects of optimization heuristic designs and analysis are discussed in this paper. As a result, detailed explanation, comparison, and discussion on AI are achieved. Furthermore, some future research fields on AI are well summarized.  相似文献   

6.

Artificial bee colony algorithm simulates the foraging behavior of honey bees, which has shown good performance in many application problems and large-scale optimization problems. To model the bees foraging behavior more accurately, a food source-updating information-guided artificial bee colony algorithm is proposed in this paper. In this algorithm, some food source-updating information obtained during optimizing time is introduced to redefine the foraging strategies of artificial bees. The proposed algorithm has been tested on a set of test functions with dimension 30, 100, 1000 and compared with some recently proposed related algorithms. The experimental results show that the performance of artificial bee colony algorithm is significantly improved for both rotated problems and large-scale problems. Compared with the related algorithms, the proposed algorithm can achieve better or competitive performance on most test functions and greatly better performance on parts of test functions.

  相似文献   

7.
Artificial bee colony (ABC) algorithm, one of the swarm intelligence algorithms, has been proposed for continuous optimization, inspired intelligent behaviors of real honey bee colony. For the optimization problems having binary structured solution space, the basic ABC algorithm should be modified because its basic version is proposed for solving continuous optimization problems. In this study, an adapted version of ABC, ABCbin for short, is proposed for binary optimization. In the proposed model for solving binary optimization problems, despite the fact that artificial agents in the algorithm works on the continuous solution space, the food source position obtained by the artificial agents is converted to binary values, before the objective function specific for the problem is evaluated. The accuracy and performance of the proposed approach have been examined on well-known 15 benchmark instances of uncapacitated facility location problem, and the results obtained by ABCbin are compared with the results of continuous particle swarm optimization (CPSO), binary particle swarm optimization (BPSO), improved binary particle swarm optimization (IBPSO), binary artificial bee colony algorithm (binABC) and discrete artificial bee colony algorithm (DisABC). The performance of ABCbin is also analyzed under the change of control parameter values. The experimental results and comparisons show that proposed ABCbin is an alternative and simple binary optimization tool in terms of solution quality and robustness.  相似文献   

8.
Artificial bee colony (ABC) algorithm developed by Karaboga is a nature inspired metaheuristic based on honey bee foraging behavior. It was successfully applied to continuous unconstrained optimization problems and later it was extended to constrained design problems as well. This paper introduces an upgraded artificial bee colony (UABC) algorithm for constrained optimization problems. Our UABC algorithm enhances fine-tuning characteristics of the modification rate parameter and employs modified scout bee phase of the ABC algorithm. This upgraded algorithm has been implemented and tested on standard engineering benchmark problems and the performance was compared to the performance of the latest Akay and Karaboga’s ABC algorithm. Our numerical results show that the proposed UABC algorithm produces better or equal best and average solutions in less evaluations in all cases.  相似文献   

9.
李彦苍  彭扬 《控制与决策》2015,30(6):1121-1125
为了克服人工蜂群算法在处理复杂性问题时收敛速度慢、收敛精度不高、易早熟等缺陷,在原始人工蜂群算法的基础上引入信息熵。信息熵本身是不确定性的一种度量,由信息熵的值来度量人工蜂群算法中跟随蜂选择的不确定性,通过控制信息熵的值达到控制算法中跟随蜂选择过程的目的,实现算法的自适应调节。通过对测试函数和不同规模TSP问题的模拟仿真,对人工蜂群算法、蚁群算法和其他改进方法进行了对比,验证了所提出改进方法的可行性和有效性。  相似文献   

10.
Obtaining an optimal solution for a permutation flowshop scheduling problem with the total flowtime criterion in a reasonable computational timeframe using traditional approaches and optimization tools has been a challenge. This paper presents a discrete artificial bee colony algorithm hybridized with a variant of iterated greedy algorithms to find the permutation that gives the smallest total flowtime. Iterated greedy algorithms are comprised of local search procedures based on insertion and swap neighborhood structures. In the same context, we also consider a discrete differential evolution algorithm from our previous work. The performance of the proposed algorithms is tested on the well-known benchmark suite of Taillard. The highly effective performance of the discrete artificial bee colony and hybrid differential evolution algorithms is compared against the best performing algorithms from the existing literature in terms of both solution quality and CPU times. Ultimately, 44 out of the 90 best known solutions provided very recently by the best performing estimation of distribution and genetic local search algorithms are further improved by the proposed algorithms with short-term searches. The solutions known to be the best to date are reported for the benchmark suite of Taillard with long-term searches, as well.  相似文献   

11.
针对原人工蜂群算法在寻优过程中存在收敛精度不高、容易陷入局部最优的问题,提出一种改进人工蜂群算法(SWT-ABC)。将社会学中强弱关系模型化并引入多子群矩阵式蜂群结构,定义了强关系个体从三个方向随机引导搜索,加快算法收敛速度和提高收敛精度;为增强算法跳出局部最优的能力,定义了弱关系个体交互以实现子群间信息交流来提升种群多样性;增加侦查蜂反向学习机制并确定合适的蜜源上限,能有效提升目标函数评价次数的利用效率。通过基准测试函数的数值实验并与12种改进算法进行对比,改进后的人工蜂群算法收敛精度更高、全局寻优能力更强,并且在高维优化问题求解中仍具备良好的收敛性能。  相似文献   

12.
Nature-inspired meta-heuristics have gained popularity for the solution of many real world complex problems, and the artificial bee colony algorithm is one of the most powerful optimisation methods among the meta-heuristics. However, a major drawback prevents the artificial bee colony algorithm from accurately and efficiently finding final solutions for complex problems, whose variables interact with each other. We propose a novel optimization method based on the artificial bee colony algorithm and statistics. The proposed optimization method is evaluated for Pott models and optimization linkage functions, and the proposed method is verified to outperform traditional artificial bee colony and other meta-heuristics for those cases.  相似文献   

13.
This paper represent a new multiple colony bees algorithm (MCBA) for functional optimization. The MCBA simulates the behaviours of honey bees in their own hive and realizes a communication strategy between the bees living in different hives. However, there is not much information about such a communication strategy between different hives of honey bees. Since information sharing is an essential issue from the optimization point of view, this relevant communication strategy has been based on the similarity between the waggle dance behaviours of real honey bees and the pheromone laying and following behaviours of ants. By the way the MCBA uses the positive feedback mechanism as distinct from the basic bees algorithm and other versions of the bee swarm optimization algorithms. The performance of the proposed MCBA is tested on a set of well-known test functions through a set of computational study, which contains comparison to some other standard meta-heuristics, cooperative approaches and ant-related approaches. The experimental results indicate the effectiveness of the proposed MCBA.  相似文献   

14.
蜂群算法研究综述*   总被引:8,自引:1,他引:7  
蜂群算法是一种模仿蜜蜂繁殖、采蜜等行为的新兴的群智能优化技术,近几年备受研究者关注。初步探讨了蜂群算法的理论基础,详细论述了基于蜜蜂繁殖行为和采蜜行为的两类蜂群算法的生物学机理及其最常见算法的应用研究情况,并分析比较了遗传算法、蚁群算法、粒子群算法和蜂群算法的优缺点、适用范围及性能。最后,总结了现有蜂群算法存在的问题,并指出其未来的研究方向。  相似文献   

15.
求解车辆路径问题的人工蜂群算法   总被引:2,自引:0,他引:2  
采用人工蜂群算法对车辆路径问题进行求解,给出食物源的自然数编码方法,并采用邻域倒位方法生成候选食物源。应用算法求解了多个车辆路径问题的实例,并将结果与其它一些启发式算法进行了比较和分析。计算结果表明,人工蜂群算法可以有效求解车辆路径问题,同时也为算法求解其它一些组合优化问题提供了有益思路。  相似文献   

16.
人工蜂群算法是一种基于蜜蜂采蜜机制的新型演化算法。给出了带平衡约束的圆形布局问题的数学模型,介绍了人工蜂群算法的基本过程以及计算流程,将人工蜂群算法应用于带平衡约束的圆形布局优化中。通过两个实例进行仿真计算,并将计算结果与文献结果比较,验证了人工蜂群算法是解决此类问题的一种有效且实用的群智能算法。  相似文献   

17.
The purpose of this paper is to develop a novel hybrid optimization method (HRABC) based on artificial bee colony algorithm and Taguchi method. The proposed approach is applied to a structural design optimization of a vehicle component and a multi-tool milling optimization problem.A comparison of state-of-the-art optimization techniques for the design and manufacturing optimization problems is presented. The results have demonstrated the superiority of the HRABC over the other techniques like differential evolution algorithm, harmony search algorithm, particle swarm optimization algorithm, artificial immune algorithm, ant colony algorithm, hybrid robust genetic algorithm, scatter search algorithm, genetic algorithm in terms of convergence speed and efficiency by measuring the number of function evaluations required.  相似文献   

18.
The class of foraging algorithms is a relatively new field based on mimicking the foraging behavior of animals, insects, birds or fish in order to develop efficient optimization algorithms. The artificial bee colony (ABC), the bees algorithm (BA), ant colony optimization (ACO), and bacterial foraging optimization algorithms (BFOA) are examples of this class to name a few. This work provides a complete performance assessment of the four mentioned algorithms in comparison to the widely known differential evolution (DE), genetic algorithms (GAs), harmony search (HS), and particle swarm optimization (PSO) algorithms when applied to the problem of unconstrained nonlinear continuous function optimization. To the best of our knowledge, most of the work conducted so far using foraging algorithms has been tested on classical functions. This work provides the comparison using the well-known CEC05 benchmark functions based on the solution reached, the success rate, and the performance rate.  相似文献   

19.
To solve high-dimensional function optimization problems, many evolutionary algorithms have been proposed. In this paper, we propose a new cooperative coevolution orthogonal artificial bee colony (CCOABC) algorithm in an attempt to address the issue effectively. Cooperative coevolution frame, a popular technique in evolutionary algorithms for large scale optimization problems, is adopted in this paper. This frame decomposes the problem into several subcomponents by random grouping, which is a novel decomposition strategy mainly for tackling nonseparable functions. This strategy can increase the probability of grouping interacting variables in one subcomponent. And for each subcomponent, an improved artificial bee colony (ABC) algorithm, orthogonal ABC, is employed as the subcomponent optimizer. In orthogonal ABC, an Orthogonal Experimental Design method is used to let ABC evolve in a quick and efficient way. The algorithm has been evaluated on standard high-dimensional benchmark functions. Compared with other four state-of-art evolutionary algorithms, the simulation results demonstrate that CCOABC is a highly competitive algorithm for solving high-dimensional function optimization problems.  相似文献   

20.
This study presents a comparison of global optimization algorithms applied to an industrial engineering optimization problem. Three global stochastic optimization algorithms using continuous variables, i.e. the domain elimination method, the zooming method and controlled random search, have been applied to a previously studied ride comfort optimization problem. Each algorithm is executed three times and the total number of objective function evaluations needed to locate a global optimum is averaged and used as a measure of efficiency. The results show that the zooming method, with a proposed modification, is most efficient in terms of number of objective function evaluations and ability to locate the global optimum. Each design variable is thereafter given a set of discrete values and two optimization algorithms using discrete variables, i.e. a genetic algorithm and simulated annealing, are applied to the discrete ride comfort optimization problem. The results show that the genetic algorithm is more efficient than the simulated annealing algorithm for this particular optimization problem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号