首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Effects of steeping conditions (time, temperature and soaking solution) and anaerobic storage on the gamma-aminobutyric acid (GABA) content in waxy hull-less barley grains during germination was examined. The barley kernel was steeped for 16 h at different temperatures (5, 15 or 35 °C) either in water or in a buffer solution (pH 6.0, 50 mmol/L sodium acetate) and then germinated at 15 °C for 72 h. To reach the optimum water content (36–44 g/100 g) for germination, a longer steeping period was required when steeping temperature was lower (16 h at 5 °C vs. 8 h at 15 °C). At 35 °C for steeping, however, the water content in the grains increased excessively, and thus germination percentage became much less than those at 5 and 15 °C. The GABA content increased with increasing germination time and was higher in the buffer solution than water. These findings indicate that the glutamate decarboxylase (GAD), which is the rate-limiting enzyme for GABA synthesis, is more activated by extending germination at controlled pH (6.0). An anaerobic storage with nitrogen in the dark for the germinated barley grains substantially raised the GABA content: 14.3 mg/100 g after the treatment for 12 h, which was four times higher than that of control sample (3.7 mg/100 g). Overall results suggest that the steeping prior to germination greatly affects the GABA production during the germination of barley, and the anoxia storage with nitrogen after the germination increases the GABA content.  相似文献   

2.
3.
4.
5.
6.
Various ethanolic concentrations (0–95%, v/v) and temperatures (25–95 °C) were used to extract γ-aminobutyric acid (GABA) tea leaves. Extraction yields, and contents of total phenols, various catechins, GABA, theanine, and antioxidant properties of extracts were determined. The 50% (v/v) ethanol at 50–95 °C gave higher yields (32.05–32.56 g dried extract/100 g dried tea leaves). The bioactive components and antioxidant properties of extracts were affected by the ethanolic concentrations and temperatures. Among catechins, epigallocatechin gallate was the main catechin in all extracts, followed by epigallocatechin, epicatechin, epicatechin gallate, gallocatechin and gallocatechin gallate. The 50–75% (v/v) ethanol at 75–95 °C gave higher contents of ester type (102.92–104.54 mg/g extract) and non-ester type (61.75–63.55 mg/g extract) catechins. Water at 50–75 °C gave higher GABA and theanine contents and higher chelating ability of extracts. The 75% (v/v) ethanol at 25–75 °C gave higher scavenging ability and reducing power of extracts. Based on dried tea extracts or leaves results obtained, the optimal extraction conditions to maintain the total contents of various catechins, GABA and theanine in the maximum level were 50% ethanol (v/v) and 75–95 °C.  相似文献   

7.
Food Science and Biotechnology - The effects of γ-aminobutyric acid (GABA) on sleep and its levels in blood after oral administration were investigated in humans. A randomized, single-blind,...  相似文献   

8.
Heat and hypoxic treatments were combined with soaking to enhance γ-aminobutyric acid (GABA) production in germinated paddy (GP). Effects of heating temperature, heating techniques, that is, impinging stream drying (ISD) and tray drying (TD), and germination time on the GABA content, phenolics content and antioxidant activity were also investigated. Heating temperature had a significant effect on the GABA content; both ISD and TD helped increase the GABA content when the post-treatment grain temperature was 38–40.5 °C. Within this grain temperature range, soaking in combination with heat and hypoxic treatments (S-ISD-H and S-TD-H) yielded GP with higher GABA content than soaking (S) and soaking in combination with hypoxic treatment (S-H). However, ISD was noted to be more suitable than TD. Phenolics content and antioxidant activity of GP prepared by S-ISD-H at different heating temperatures and S-H were not significantly different but were higher than those of the GP prepared by S.  相似文献   

9.
10.
GABA-producing lactic acid bacteria were isolated from kimchi and salt-fermented Jot-gal, which are traditional Korean fermented foods. The strain, BJ-20, isolated from salt-fermented Jot-gal (cod gut), possessed the highest GABA-producing ability in MRS broth with 1% monosodium glutamate (MSG), as determined by thin layer chromatography. The BJ-20 strain was identified as Lactobacillus brevis and designated as L. brevis BJ20. A sea tangle solution was fermented over 5 days to produce GABA using L. brevis BJ20. During fermentation, the GABA concentration dramatically increased, while the glutamic acid concentration decreased. This result indicates that the glutamic acid was converted to GABA by L. brevis BJ20 in the fermented sea tangle solution. Furthermore, the fermented solution exhibited strong antioxidant activities, such as DPPH scavenging, superoxide scavenging, and xanthine oxidase inhibition, which were higher than those of BHA as a positive control.  相似文献   

11.
γ-Aminobutyric acid (GABA)-producing Lactobacillus brevis 877G strain isolated from traditional Korean fermented food, kimchi, produced 18.94 mM GABA under 59.13 mM L-monosodium glutamate (MSG). Also, skim milk co-fermented with Lb. brevis 877G as a GABA producer and Lactobacillus sakei 795 as a protease producer resulted in a significant increase in GABA production (22.51 mM) with 29.57 mM MSG. The results indicate that Lb. brevis 877G itself and skim milk cofermented with Lb. brevis 877G and Lb. sakei 795 could be developed to be a useful starter for functional fermented food and dairy food product fortified in GABA.  相似文献   

12.
The effects of pre-processes (immersing, germinating, and cold shock) and fermentation conditions of adzuki beans on γ-aminobutyric acid (GABA) accumulation using mixed cultures of Lactococcus lactis and Lactobacillus rhamnosus were investigated in this study. Among the preprocessing methods, cold shock treatment resulted in the highest observed GABA content (201.2 mg/100 g); a 150-fold increase compared to the non-treated adzuki beans. The LAB strains grew rapidly in cold-treated adzuki bean substrates and reached 108 cfu/ml after 24 h of fermentation at 30 °C. After optimization, the GABA yield reached 68.2 mg/100 ml; a 20-fold increase compared to the non-fermentation yield. The viable cell counts of LAB remained above 108 cfu/ml after 28 days of storage at 4 °C. Our results suggest that the combination of cold shock pretreatment and fermentation by LAB may be used for the preparation of adzuki beans with high GABA content, which can then be used as a natural resource of functional foods.  相似文献   

13.
Germinated mung beans have been widely used as fresh vegetable or processed healthy food due to their high amounts of bioactive and nutritional compounds, including γ-aminobutyric acid (GABA). The objectives of this study were to investigate the effects of different soaking conditions (temperature, ratios of seeds to water, soaking time, pH, addition of L-glutamic acid (L-Glu) or gibberellic acid (GA3)) and germination time on accumulation of GABA in the germinated mung bean seeds. The mung bean seeds, soaked at 40°C for 4 h with ratio of seeds to water of 1:4 (g mL−1) and then germinated for 7 h, accumulated higher amount of GABA than other soaking conditions and germination time. The addition of GA3 (0.30 mg L−1) or L-glu (1,000 mg L−1) or acidifying to pH 5.5 of the soaking water had high impact on the GABA accumulation. Among them, the soaking water with pH 5.5 was more effective than adding with the L-Glu or GA3 in the production of GABA (1677 mg/kg powder) and essential amino acids (16.56 g/100g powder) in the germinated mung bean seeds. The findings of this study provide useful information to produce GABA-enriched and healthy foods from mung beans.  相似文献   

14.
In this study, the accumulation of GABA and its inherent factors across different varieties of mung bean (Vigna radiata L.) in response to heat and relative humidity (HRH) were investigated. Results showed the average GABA content in mung bean varieties was increased 7.52 times following HRH treatment, and the black mung bean variety (A8) exhibited the highest GABA accumulation capability (1.76–84.57 mg per 100 g DW). From the perspective of GABA shunt metabolites, the free glutamic acid content of mung beans significantly decreased (P < 0.05) after HRH treatment and presented a significant correlation (P < 0.05) with GABA content. In polyamine degradation pathway, although the average levels of spermine and spermidine of mung bean varieties significantly decreased (P < 0.05) after HRH treatment, no significant correlation with GABA content was identified. Hence, the GABA accumulation was predominantly attributed to GABA shunt. Besides, free amino acids including glutamic acid, serine, ornithine, arginine and glycine in mung beans showed a significant positive correlation (P < 0.05) with GABA content and increment following HRH treatment, which suggested that mung beans enriched in these free amino acids might accumulate higher amounts of GABA after HRH treatment and be useful for industrial applications.  相似文献   

15.
Passiflora edulis, commonly known as passion fruit, is a popular all-weather fruit eaten fresh or processed. Its shells, which currently are mostly discarded as waste and hurt the environment, account for more than half of the passion fruit. The shells contain gamma-aminobutyric acid (GABA) which is the main inhibitory neurotransmitter and has many proven medical values such as antidepressant, anti-anxiety, etc. Many studies have shown that GABA production in plants can be significantly increased by reverse stress. Taking Tainong 1 as a typical passion fruit cultivar, this study explored the optimal anoxic vacuum treatment for increasing the GABA content of passion fruit shells. The content increased to 2139.25 ± 26.69 mg/100 g on day 4 of chill storage after vacuum packing (63.68% higher than the control). The activities of glutamate decarboxylase (GAD) and diamine oxidase (DAO) were significantly higher in the vacuum-treated group than in the control group after 4 days of vacuum-chill storage. On day 5 of vacuum-chill storage, the activities of all measured enzymes decreased except for the increase of GABA transaminase (GABA-T), which was accompanied by a decrease in GABA content. Vacuum treatment and subsequent chill storage increased the content of GABA, thereby increasing functional value of passion fruit shells.  相似文献   

16.
GABA is a bioactive constituent of fruits, vegetables, cereals and is believed to play a role in defense against stress in plants. In animals, it acts as an inhibitory neurotransmitter in brain while also expressed in non-neuronal cells. Studies have implicated the regulator of fight or flight stress responses, β-AR signaling cascade, as mediators of cancer growth and progression in in vitro and in vivo models of pancreatic malignancies. Pancreatic cancer is the fourth leading cause of cancer mortality in western countries. This malignancy is generally unresponsive to conventional radio- and chemotherapy, resulting in mortality rate near 100% within 6 months of diagnosis. We review a series of experiments from our laboratory and those of others examining the contribution of this signaling network to pancreatic and other human malignancies. Stimulation of the β-adrenergic receptor by lifestyle and environmental factors, as well as a pre-existing risk of neoplasm, activates downstream effector molecules that lead to pro-oncogenic signaling and thereby aid cancer growth. GABAergic signaling mediated by the serpentine receptor GABA(B) acts as an antagonist to β-adrenergic cascade by intercepting adenylyl cyclase. These evidences enhance the pharmacological value of human diets rich in GABA for use as an adjuvant to standard therapies.  相似文献   

17.
Kazakh cheese is a traditional dairy product in Xinjiang, China. To study the function and potential probiotic characteristics of yeast in Kazakh cheese and its contribution to cheese fermentation, we screened the γ-aminobutyric acid (GABA)–producing yeasts Pichia kudriavzevii 1–21, Kluyveromyces marxianus B13–5, Saccharomyces cerevisiae DL6–20, and Kluyveromyces lactis DY1–10. We investigated the potential probiotic properties of these strains and their use in cheese fermentation (cheeses designated CSP, CSM, CSS, and CSI, respectively); a control with no added yeast was designated CS. The results showed that the 4 yeast strains all showed high self-polymerization (2- and 24-h autoaggregation capacity of >80 and 90%, respectively), hydrophobicity (40–92% variation, low hydrophobicity in xylene, but within the range of probiotics), and the ability to survive the gastrointestinal tract (survival rate >75% after simulation), indicating the probiotic ability of the strains in vitro. The GABA production capacity of the CSM cheese increased (to 95.6 mg/100 g), but its protein content did not change significantly, and amino acid degradation was obvious. The GABA production capacity of the CSS cheese decreased (to 450 mg/kg); its protein content declined, and its amino acid content increased. Except for water and protein, we found no obvious differences in most physical and chemical indicators. Kluyveromyces marxianus B13–5 helped to form the desired texture. Multivariate statistical analysis showed that fermentation of the cheese with the 4 yeasts improved the production of esters and alcohols. The CSS cheese had good aroma production performance, because S. cerevisiae DL6–20 produced high concentrations of isoamyl alcohol, hexanoic acid ethyl ester, benzyl alcohol, octanoic acid ethyl ester, 3-hydroxy-2-butanone, and hexanoic acid; the content of 2-methyl-propanoic acid was low. Compared with the CSP cheese, the CSI and CSM cheeses had a fruitier aroma and a milder odor, but the CSI and CSM cheeses had high concentrations of ethyl acetate, butanoic acid, ethyl ester, 3-methyl-1-butanol-acetate, ethyl hexanoate, ethyl octanoate, acetic acid 2-phenylethyl ester, and ethyl lactate; concentrations of 3-methyl-butanoic acid, propanoic acid, acetic acid, and butanoic acid were low. The CSP cheese had stronger acid-producing ability. The order of fragrance production performance was CSS > CSI, CSM > CSP > CS. Research into the fermentation mechanisms of GABA-producing yeast in cheese will provide a theoretical basis for the quality control and industrial production of Kazakh cheese.  相似文献   

18.
Effects of white sorghum brewing process on free amino-acids, γ-aminobutyric acid (GABA), phenolics and bioactivity, including antioxidant (by ABTS+ and reducing power, RP, methods), antihypertensive (angiotensin converting enzyme-I, ACE-I inhibition assay), and hypoglycaemic activity (α-glucosidase inhibition assay) were evaluated. From the wort to the beer, free amino acids decreased, but GABA and phenolics increased significantly, positively modifying the bioactive potential. ABTS and α-glucosidase inhibition activity correlated positively with at least one of the phenolic acids evaluated. Ale white sorghum beer presented high content of GABA (7.8 mg L−1), phenolics (40.7 mg total phenolic acids L−1), antioxidant activity (9.14 mmol Trolox equivalent L−1, and 48.8 mmol ascorbic acid equivalent L−1, for ABTS+ and RP, respectively), and exhibit ACE-I inhibition (1.0 μg captopril equivalent L−1) and α-glucosidase inhibition (34.5 mg acarbose equivalent L−1) activities. The level of bioactive compounds and its low ethanol content (2.3%), make beer obtained from malted white sorghum a potential functional beverage.  相似文献   

19.
In order to accumulate γ-aminobutyric acid (GABA), soybean seeds (cultivar Jindou 25) were germinated for 102 h at different temperatures (19, 25 and 32 °C). The content of GABA, glutamic acid and the activity of the glutamate decarboxylase (GAD) and GABA transaminase (GABA-T) in soybeans during germination were investigated. The results showed that the germination temperature and germination time had great influences on GABA content and the related enzyme activities in soybean seeds. As compared to raw soybeans, an increase in the content of GABA and glutamic acid was observed, as well as GAD activity in soybeans during germination, while germination at 32 °C was better for accumulating GABA in soybeans. The GABA-T activity first decreased and then increased at 19 °C and 25 °C, on the contrary, it first increased and then decreased sharply during germination at 32 °C. These results indicate that the increase of GABA content can be attributed to the changes of GAD and GABA-T activities rather than enough glutamic acid resulting from the degradation of protein during germination of Jindou 25 seeds. However, more assays need to be further performed with more soybean cultivars.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号