首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 242 毫秒
1.
As a passive cooling strategy aimed at controlling increased surface temperatures and creating cooler urban environments in summer, the authors developed a passive evaporative cooling wall (PECW) constructed of porous ceramics. These ceramics possess a capillary force to soak water, which means that their vertical surface is wet up to a level higher than 100 cm when their lower end is placed in water. The present paper describes an experiment that clarifies the cooling effects of a prototype PECW constructed of pipe-shaped ceramics. The PECW is capable of absorbing water and allows wind penetration, thus reducing its surface temperature by means of water evaporation. Passive cooling effects such as solar shading, radiation cooling, and ventilation cooling can be enhanced by incorporating PECWs into the design of outdoor or semi-outdoor spaces in parks, pedestrian areas and residential courtyards. The following findings were understood from an experimental data collected over a summer period. Wet vertical surfaces of the ceramic pipe reached a height of over 1 m at an outdoor location exposed to solar radiation. Wet surface conditions can be maintained throughout successive sunny days during summer. A slight difference in the vertical surface temperatures of the ceramic pipe was found. The air passing through the PECW was cooled, and its temperature can be reduced to a minimum value by several degrees during summer daytime. It was also found that the surface temperature of the shaded ceramic pipe can be maintained at a temperature nearly equal to the wet-bulb temperature of outdoor air.  相似文献   

2.
As a passive cooling strategy to control increased surface temperatures and create cooler urban environments, we have developed a passive evaporative cooling wall (PECW) constructed of pipe-shaped ceramics that possess a capillary force to absorb water up to a level higher than 130 cm. The current paper presents a simulation system to predict and evaluate microclimatic modifying effects of PECWs in urban locations where PECW installation is under consideration at the design stage. This simulation system is composed of a CFD simulation tool and a 3D-CAD-based thermal simulation tool. Simulation methodology of coupling the two simulation tools was developed and described in this paper. Numerical models for simulating surface temperatures and evaporation of PECWs were proposed based on analysis results of experimental data. Validation of the proposed numerical models was confirmed by comparing simulated results with measured data. In order to demonstrate the applicability of the proposed simulation system, a case study was then performed to predict and evaluate the microclimate in a rest station where PECWs were assumed to be installed. Spatial distributions of air temperature, airflow, moisture and surface temperature in the rest station were simulated under a sunny weather condition in the summer of Tokyo. Furthermore, thermal comfort indexes (mean radiant temperature and new standard effective temperature) were used to evaluate thermal comfort in the human activity spaces of the rest station. Simulation results show that this simulation system can provide quantitative predictions and evaluations of microclimatic modifying effects resulting from the application of PECWs.  相似文献   

3.
An open-air scaled urban surface (OASUS) was used to physically model the influence of urban structure on microclimatic conditions that affect the cooling requirements of buildings. The OASUS scale-model consists of an extensive urban-like building/street array constructed at an open site in the arid Negev region of southern Israel. Building rows are comprised of hollow concrete masonry blocks and have thermal and optical properties analogous to common local construction materials. Previous experiments with the scale-model were limited to “dry” conditions, with only negligible exchanges of latent heat. Considering that one of the main advantages of using the scale-model facility is to be able to control factors affecting microclimate, this study analyses the impact of adding moisture to the scaled “streets” between “building” rows, and gauges the impact of outdoor evaporative cooling on the energy demand of adjacent buildings. Measurements carried out during the summer month of August 2006 at the scale-model facility were used to obtain street canyon air temperatures, which in turn provided input for a dynamic energy simulation of indoor cooling loads in an actual building. The simulation model was calibrated with simultaneously measured data from a nearby residential building. Results suggest that the cooling factor in a street canyon is a direct function of the relative availability of moisture, with respect not only to horizontal area but also to the “complete” three-dimensional urban surface. In addition, simulation results of building energy demand show the importance of accounting for urban density when planning the disposition of vegetated surfaces for cooling purposes.  相似文献   

4.
Existing desiccant cooling systems reduce the temperature of process air either by adopting evaporative coolers or incorporating vapor compression systems. While the former is restricted by inaccurate control, the latter still consumes certain quantity of electric power. To solve this problem, a thermally driven air conditioning system, which combines the technologies of rotary desiccant dehumidification and regenerative evaporative cooling, has been proposed and investigated. In addition to dehumidification, the system is capable of producing chilled water, thereby realizing separate temperature and humidity control without increasing electrical load. To find out the characteristics of produced chilled water and evaluate the feasibility and energy saving potential of this novel system, a mathematical model has been developed. Case studies have been conducted under Air conditioning and Refrigeration Institute (ARI) summer, ARI humid and Shanghai summer conditions. It is found that the system can achieve a thermal COP higher than 1.0 and an electric COP about 8.0. The temperature of chilled water produced by the system is around 14–20 °C. This chilled water can be used with capillary tube mats for radiant cooling. It is suggested that the system can also be designed as a standalone chilled water plant. As a desiccant dehumidification-based chilled water producing technology, this would expand desiccant cooling to a boarder niche application. The effects of chilled water flow rate, air distribution ratio, inlet air conditions and regeneration temperature have been analyzed in detail. Reachable handling regions, which will be helpful to system design and optimization, have been obtained.  相似文献   

5.
In this paper, the results of a study on a hybrid system of nocturnal radiative cooling, cooling coil, and direct evaporative cooling in Tehran have been discussed. During a night, the nocturnal radiative cooling provides required chilled water for a cooling coil unit. The cold water is stored in a storage tank. During eight working hours of the next day, hot outdoor air is pre-cooled by means of the cooling coil unit and then it enters a direct evaporative cooling unit. In this period, temperature variation of the conditioned air is investigated. This hybrid system complements direct evaporative cooling as if it consumes low energy to provide cold water and is able to fulfill the comfort condition whereas direct evaporative alone is not able to provide summer comfort condition. The results obtained demonstrate that overall effectiveness of hybrid system is more than 100%. Thus, this environmentally clean and energy efficient system can be considered as an alternative to the mechanical vapor compression systems.  相似文献   

6.
The present work investigates the causes of the variability in air temperature patterns among urban streets with trees in Athens, as obtained from in situ measurements, in a suburb area and in the city center. Urban variables studied are: the extent of tree canopy coverage, traffic load, surfaces albedo modification, street deepening aspect and the street’s ventilation. The thermal effect of each variable is estimated by simulations using the Green CTTC analytical microclimate model. The model was first validated with measurements data and consequently used to study the effect of the various urban variables in attenuating the high values of air temperature within the studied streets considering two feasible scenarios for each of the examined streets. Model results revealed that the total attenuation effect in reducing the air temperatures inside the streets may reach as much as 5 K at noontime with a daily average cooling of 3 K. Further, the study demonstrates the potential use of microclimate modeling in assessing the merits of proposed passive cooling strategies in urban streets.  相似文献   

7.
Using the existing floor heating system, the radiant floor cooling system can be used as an alternative to the conventional all-air cooling systems. In this paper, a numerical model for the radiant floor cooling system is built using finite volume method. The objective of this study is to research the effects of the thermal resistance of pipe and water velocity on the performance of the radiant floor cooling system. In order to provide better heat transfer simulation in the pipe, composite grids are used in the model. The numerical floor surface temperature and the heat flux are in agreement with the measured results. The results illustrate that the pipe has effect on the performance of the radiant floor cooling system when the thermal conductivity of the pipe is low. However, the effect of the water velocity on the performance of the cooling system is not great. The model is helpful to calculate and design such kind of radiant floor cooling systems.  相似文献   

8.
透壁通风管路堤降温效应的室内试验研究   总被引:7,自引:0,他引:7       下载免费PDF全文
介绍了研究透壁通风管路堤降温效果的室内试验方法,对100cm×60cm×100cm尺寸的不同通风管路堤试样进行了实验研究。结果表明,采用透壁通风管能明显增强路堤的降温效果,而只在负温期间通风的透壁通风管路堤降温效果更为显着,路堤在通风管进风口附近的温度变化幅度以及负温区域的范围都明显大于通风管出风口处,形成了路基温度场沿着风向的不对称分布。  相似文献   

9.
Cooling performance of two-stage indirect/direct evaporative cooling system is experimentally investigated in the various simulated climatic conditions. For this purpose, a two-stage evaporative cooling experimental setup consisting of an indirect evaporative cooling stage (IEC) followed by a direct evaporative cooling stage (DEC) was designed, constructed and tested. Due to the wide variety of climatic conditions in Iran, two air simulators were provided to simulate outdoor design condition of different cities in primary and secondary air streams. Results show that under various outdoor conditions, the effectiveness of IEC stage varies over a range of 55–61% and the effectiveness of IEC/DEC unit varies over a range of 108–111%. Aspects of achieving comfort conditions and power saving have been investigated with related excess water consumption. Considering the evaporative comfort zone, this system can provide comfort condition in a vast region in Iran where direct evaporative alone is not able to provide summer comfort condition. More than 60% power saving could be obtained by this system in comparison with mechanical vapor compression systems with just 55% increase in water consumption with respect to direct evaporative cooling systems. This system can fill the gap between direct evaporative cooling systems and mechanical vapor compression systems as an energy efficient and environmentally clean alternate.  相似文献   

10.
对开放条件下,粒径对块、碎石护坡降温效果的影响进行了一系列试验研究,试验中选择的粒径范围为:6~8、14~16、21~23、28~30 cm。结果表明:迎风与背风两种条件下,4种粒径块、碎石护坡均具有较好的降温效果,均可在第2个试验周期将其下部土坡表面平均温度迅速降至0℃以下,有效地对其下部土体进行降温。在迎风条件下,粒径在6~30 cm内,块、碎石护坡降温效果随粒径的增大而加强;背风条件下,块、碎石护坡降温效果在粒径为21~23 cm时最好。在外界气温等同的条件下,块、碎石护坡底部温度周期变化幅值主要受到迎风与背风条件的影响,块、碎石粒径的作用并不十分明显,即在迎风条件下,块、碎石护坡底部温度变化幅值远大于背风条件,并且每个试验周期中迎风护坡底部的正温高于背风护坡,且维持时间较长,这将不利于冻土路基的稳定。  相似文献   

11.
The weather in Baghdad, Iraq is hot dry in the summer while water is plentiful and cheap. These are conditions which encourage the use of evaporative cooling. A building with one space in it was used to test the effect of a roof pond which was ventilated mechanically for summer cooling. Thermal measurements were taken for the room in normal conditions without a pond, with a lone pond and no mechanical ventilation, and then finally with mechanically forced ventilation. The results showed a marked improvement in the space temperature with a significant reduction during the peak time outside temperatures at 3 O’clock reaching 6.0 °C between the room without the pond and with a ventilated one and 6.5° at 18:00 during peak inside temperatures. The study also showed that improvements would be better in real-life conditions where exterior wall area is less than the test room.  相似文献   

12.
As an application of the super-hydrophilicity of a photocatalyst (TiO2) coating, buildings are cooled by sprinkling water on their external surfaces coated with TiO2. This is a new cooling technology that was recently developed in Japan. In order to make better use of this cooling system, quantitative prediction and evaluation of the cooling effect on the urban/built environment is required during design. In an attempt to provide a computer-aided simulation tool for supporting the above-mentioned design, we introduce a thermal simulation tool that was developed previously by the authors’ group. The goal of the present study is to develop a numerical model by which to predict the temperature of a TiO2-coated surface with a water film and integrate the calculation algorithm into the simulation tool. The availability of the proposed model was discussed in the present paper. Various urban districts in downtown Tokyo were selected for a discussion of the availability of the simulation tool in which the proposed model is integrated. Simulations were performed to quantify the thermal improvement effect of the cooling system in terms of surface temperature reduction, mean radiative temperature (MRT), heat island potential (HIP), indoor air temperature, and cooling load reduction.  相似文献   

13.
In this paper, the results of an investigation on a two-stage cooling system have been studied. This system consists of a nocturnal radiative unit, a cooling coil, and an indirect evaporative cooler. During the night in summer, requisite chilled water for a cooling coil unit is provided by nocturnal radiative cooling and is stored in a storage tank. During the next day, the water in the tank provides chilled water for the cooling coil unit and hot outdoor air passes through two-stages: the cooling coil unit and an indirect evaporative cooler. Three sources provide secondary air for the indirect evaporative cooler. The sources are outdoor air, the air leaving from the cooling coil, and the air leaving from the indirect stage (regenerative). The investigation has been conducted in weather conditions in the city Tehran. The results obtained demonstrate that the first stage of the system increases the effectiveness of the indirect evaporative cooler. Also, the regenerative model provides the best comfort conditions. Therefore, this environmentally friendly and energy-efficient system can be considered as an alternative to the mechanical vapor compression systems.  相似文献   

14.
This paper introduces a simplified model for underground temperature prediction in summer hot weather. The data of 14 observation sites show that the surface temperature curves are close to trapeziums, and surface temperatures are related to air temperatures. Therefore, approximated temperature trapeziums that are determined by high- and lowest air temperatures can be used to simulate the underground temperature variation. Two observation sites respectively in the urban and suburban areas were used as examples. Good agreement was obtained between simulated- and measured temperatures. Measured data indicate the average temperature under urban concrete surface is 3.70 °C greater than that of suburban bare surface. The deviation is due to the heat urban environment effect and different surfaces effect, which are about 1.68 °C and 2.02 °C, respectively. Combined with soil volumetric water content (wv), ‘Heat’ Islands associates with ‘Dry’ Islands, which means urban soil moisture is lower than suburban soil moisture (13.9%). According to the variation of wv and temperature deviation graphs, Urban Heat Island, ground surface types and rainfall are important factors that influence the underground soil moisture and temperatures.  相似文献   

15.
Earth-pipe-air heat exchanger (EPAHE) systems can be used to reduce the cooling load of buildings in summer. A transient and implicit model based on computational fluid dynamics was developed to predict the thermal performance and cooling capacity of earth-air-pipe heat exchanger systems. The model was developed inside the FLUENT simulation program. The model developed is validated against experimental investigations on an experimental set-up in Ajmer (Western India). Good agreement between simulated results and experimental data is obtained. Effects of the operating parameters (i.e. the pipe material, air velocity) on the thermal performance of earth-air-pipe heat exchanger systems are studied. The 23.42 m long EPAHE system discussed in this paper gives cooling in the range of 8.0-12.7 °C for the flow velocities 2-5 m/s. Investigations on steel and PVC pipes have shown that the performance of the EPAHE system is not significantly affected by the material of the buried pipe (pipe). Velocity of air through the pipe is found to greatly affect the performance of EPAHE system. The COP of the EPAHE system discussed in this paper varies from 1.9 to 2.9 for increase in velocity from 2.0 to 5.0 m/s.  相似文献   

16.
The low energy approach should be the key concept in any long-term strategy aiming to build sustainability. For Madrid climate, action should be taken to reduce energy demand for heating and cooling in residential buildings.The performance of a passive cooling system was developed as a part of design work for the project of a low cost residential building. The passive cooling systems incorporate a solar chimney and precool the air by using the sanitary area of the building. The natural ventilation is enhanced with the help of the solar chimney and fresh air is cooled down by circulation within the sanitary area. The application of this system to the living rooms of a low cost residential building was evaluated and implemented. This cooling system incorporated to a residential building is the third prototype developed since 1991 by the designers. A model was developed to allow to predict the temperature of the air in the living room. The performance of the passive cooling system was evaluated based on the energy balance for a typical summer day.To reduce the energy demand in winter, a new design and window orientation has been developed and evaluated using DOE-2 simulation tool. The building has been constructed and monitored during 2006-2007.  相似文献   

17.
The change of urban surfaces from permeable to impermeable materials, i.e. asphalt or concrete, has caused the rising of surface temperatures, particularly in densely developed cities. The consequences of this problem lead to higher energy consumption, especially for cooling purposes and other environment related issues. This paper aims to investigate the performance of several non-porous and porous potential roofing materials, to determine which ones might best be used to create a more effective system by utilizing their moisture absorption and evaporation capabilities. Here, four kinds of materials—pebbles, silica sand, volcanic ash, and siliceous shale—were tested to evaluate their moisture and thermal performance, including the effects from different particle sizes. First, the necessary physical properties and pore characteristics were obtained. Thus, each material, under simple boundary conditions, was evaluated in an evaporation experiment, to determine comparative moisture and thermal behavior. Next, cyclic experimentation was conducted, in which variations of temperature, relative humidity and simulated solar radiation were included. The measurement results showed that porous materials can satisfactorily lower surface temperature. Among the tested samples, siliceous shale of both small and large particle diameter was found to lower the daily average surface temperature by up to 6.8 and 8.6 °C, respectively. The better performance of large size particles could possibly be caused by the ventilation occurring within the material layers and high solar penetration through the large gaps between particles, which would release more latent heat when compared to materials of smaller particle size. Finally, analysis of surface energy balance suggested that water contents, solar absorptivity, and wind effects all have significant influences on cooling the surface temperature.  相似文献   

18.
马军旗  吴莉 《山西建筑》2012,38(4):132-134
结合具体工程项目,介绍了冷却水管在大体积混凝土冷箱基础施工中的应用,分别阐述了施工过程中冷却水管和测温管的安装方法,通过对其冷却效果进行分析,指出使用冷却水管有利于控制温差,提高施工质量,加快施工进度。  相似文献   

19.
In hot and humid region, air-conditioning is increasingly used to attain thermal comfort. Air-conditioning is highly energy intensive and it is desirable to develop alternative low-energy means to achieve comfort. In a previous experimental investigation using a room equipped with radiant cooling panel, it was found that cooling water kept to 25 °C could be used to attain thermal comfort under some situations, while water at such temperature would not cause condensation of moisture from air on the panel. This paper reports results of a series of whole-year simulations using TRNSYS computer code on applications of radiant cooling to a room model that represents the actual experimental room. Admitting the inability of radiant cooling to accept latent load, chilled water at 10 °C was supplied to cooling coil to precool ventilation air while water cooled by cooling tower was used for radiant cooling in daytime application. For night-time, cooling water from cooling tower supplied for radiant cooling was found to be sufficient to achieve thermal comfort. Such applications are considered to be more amenable to residential houses.  相似文献   

20.
Green areas in the urban environment can contribute to the mitigation of the Urban Heat Island. In a context of climate change, with the expected increase in temperature, dryness and intensity of heat waves, green areas assume even higher importance as they can create a cooling effect that extends to the surrounding areas. This study analyses the thermal performance of a small green space (0.24 ha) and its influence in the surrounding atmospheric environment of a densely urbanised area in Lisbon. Measurements of weather parameters (temperature, relative humidity, wind speed, solar and infrared radiation) were carried out along a selected path, starting from inside the green area to surrounding streets with different orientations and solar exposure. It was found that the garden was cooler than the surrounding areas, either in the sun or in the shade. These differences were higher in hotter days and particularly related to the mean radiant temperature (Tmrt). The highest difference found was of 6.9 °C in relation to air temperature and 39.2 °C in relation to Tmrt; in both cases this difference occurred between the shaded site inside the garden and the sunny site in an E–W oriented street in the southern part of the studied area. Besides the local weather conditions, particularly the low wind speed, the sun exposure and the urban geometry are the potential factors that explain these differences. The cooling effect of green areas on the surrounding environment can be enhanced by additional measures related to the urban features of each city.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号