首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 586 毫秒
1.
本文给出一种氚钛厚靶氘氚反应加速器中子源的中子产额、能谱和角分布的计算方法,并开发了相应的计算模拟程序。用自行开发的计算程序计算了入射氘束流能量低于1.0MeV时加速器中子源的中子产额、能谱和角分布,给出了氚钛厚靶的一些典型计算结果,并对结果的可靠性进行分析。  相似文献   

2.
基于氚(氘)钛固体靶,利用TARGET程序结合实际的氚(氘)靶和靶室建模,对D-T中子和D-D中子的能量和微分截面角分布、氘离子能量损失率和平均能量、中子平均能量和能散、反应率在氚(氘)钛靶中的深度分布、中子注量率谱和中子产额进行了计算,获得了D-T和D-D中子的相关特性参数。计算结果可为在其他蒙特卡罗模型中精确描述各项异性中子源提供数据,对中子能量单色性和中子产额等指标的选择提供了参考数据。  相似文献   

3.
采用将厚靶分割成薄靶的方法对厚氚钛靶、260keV氘束流能量条件下T(d,n)4He反应中子源的能谱和角分布进行计算。以分割法计算得到的能谱和角分布数据为基础,建立了D-T中子源Monte-Carlo模拟抽样模型,在考虑中子发生器各元件材料及实验大厅墙壁对快中子的慢化、散射和吸收的条件下,采用MCNP程序对兰州大学3×1012s-1强流中子发生器260keV氘束流能量下的中子能谱和角分布进行了模拟,给出了模拟结果。为检验模拟结果的可靠性,与实验测量能谱进行了比较,Monte-Carlo模拟谱和实验测量谱基本符合。  相似文献   

4.
用厚靶氘氚(D-T)反应中子产额的计算方法模拟计算了入射氘离子能量为120 keV时D-T中子源的中子产额。研究了氘离子源产生的束流中单原子氘离子(D+)及双原子氘离子(D2+)比例对中子产额的影响。结果表明,提高D+比例,同时降低D2+比例将有效提高中子产额。另外还研究了不同靶膜材料及组分引起的中子产额变化。表明中子产额与靶膜中氚的含量成正比,与靶膜元素的原子质量成反比。同时分析讨论了离子源品质及靶参数对中子源整体性能的影响,得出离子源束流品质的提高对中子源整体的设计至关重要。最后,模拟计算了靶膜表面有氧化层情况下中子产额的变化,并与实验结果作了对比。在此基础上提出了一种新的靶设计方案,并对其物理可行性进行了研究。  相似文献   

5.
厚铍靶9Be(d,n)反应中子产额测量   总被引:1,自引:1,他引:0  
能量在3MeV以下厚靶D-Be反应的中子产额实验数据至关重要,但较为缺乏。本工作在北京大学4.5MV静电加速器上对氘束轰击厚铍靶的中子产额进行测量。对入射氘核能量在0.35~2MeV之间的若干能量点用长中子计数管进行了0°方向中子产额、中子角分布及中子总产额的测量。与已有的测量结果和经验公式进行了比较,并拟合出氘束轰击厚铍靶中子总产额的经验公式。  相似文献   

6.
大面积氘/氚靶是实现高产额强流中子源的关键部件,是氘、氚中子源广泛应用的前提条件。本工作采用磁控溅射镀膜与多弧离子镀结合的方式,制备以铜或钼为基底、直径大于500 mm的大面积钛膜。针对制备的钛膜,采用自研的氘/氚靶生产系统,经过除气、净化、高温吸氘/氚、尾气回收等流程,生产了氘/氚钛原子比大于1.85的氘靶、氚靶,采用Ф22 mm的小靶片,进行氘束流加速器中子产额测试,研制的氘靶中子产额达到8.0×108/s,根据氘靶与氚靶反应截面计算氚靶中子产额,相同条件下,氚靶的中子产额在1.0×1011/s以上。以上测试结果表明,本工作研制的Ф500 mm大面积氘/氚靶,可实现强流中子源的高产额中子输出,达到国际先进水平。  相似文献   

7.
中能^12C重离子在Fe等厚靶上核反应的中子产额和能谱   总被引:1,自引:1,他引:0  
郑华智 《辐射防护》1992,12(6):431-434
本文调研了由测量和核内级联-蒸发模型理论计算得到的中能区重离子核反应中子发射微分截面数据,并依据这些结果计算给出了单核能为58.3和100MeV 的~(12)C 离子轰击~(56)Fe 厚靶产生的次级中子能谱、角分布和总产额。同时对现有数据做了较为细致的分析,为重离子的防护提供了一些基础资料。  相似文献   

8.
对氚化钛膜表面氧化层厚度对氘氚中子产额的影响进行了理论与实验研究.理论计算表明,能量为120keV的氘核入射氚化钛膜的深度为833 nm,入射钛氧化层的深度为527-577 nm.实验结果表明,氧化层降低了氘氚反应的中子产额,且中子产额随氧化层厚度的增加而减小,氧化层厚度低于220nm,中子产额与氧化层厚度的线性关系为Y=(7.524-0.01326X)×106.  相似文献   

9.
强流D-T中子发生器n-γ辐射场的MC模拟研究   总被引:1,自引:1,他引:0  
根据D-T中子源260 keV氘束流能量下的中子能谱和角分布数据,建立了D-T中子源模型,在中子发生器各元件材料及实验大厅墙壁对快中子的慢化、散射和吸收的条件下,采用MCNP模拟程序对强流中子发生器n-γ辐射场进行了模拟研究,得到了中子能谱、中子和γ角分布、n-γ比等重要参数.模拟结果与有关文献实验数据的基本吻合,验证了所建立的MCNP模拟模型的可靠合理.  相似文献   

10.
本文给出一种含表面层氚钛靶D-T反应中子产额的计算方法,并开发了相应的数值计算程序。以氧化层为TiO2为例,定量计算了D核在TiO2中的深度分布统计及透过率、200keV的D核穿过不同厚度TiO2的能量分布函数、D核入射含不同厚度氧化层TiT1.0的D-T中子产额和不同能量D核入射固定厚度氧化层TiT1.0的D-T中子产额。结果显示,中子产额随氧化层厚度的增加而减小,对于200keV的D核入射到含TiO2氧化层的TiT1.0厚靶,当TiO2厚度为0.1μm时,损失约10%的中子产额,厚度为0.2μm时,损失约20%的中子产额。本方法可推广到其他类型表面层(如污染层、保护层等)的中子产额计算,可用于中子发生器用靶的结构设计和中子产额评估。  相似文献   

11.
在目前的氘氚中子发生器源中子分析过程中,固体氚靶中氚浓度深度分布信息的缺失是普遍遇到的问题。为解决此问题,本文建立了利用伴随粒子能谱反演氚浓度深度分布的模型,采用来自氚钛靶的α实验能谱作为模型测试对象,通过该模型获得了氚钛靶中氚浓度深度分布的数据。结果表明,氚浓度随氚钛靶深度的增加呈双峰趋势,两峰之间的氚浓度波谷位于靶中0.94 μm处,该深度正是入射氘粒子的射程极限。所得的氚浓度深度分布趋势与其他实验方法测量结果相符,表明该模型能为氘氚中子发生器的源中子分析提供即时的氚浓度深度分布信息。  相似文献   

12.
质子加速器适用于为硼中子俘获治疗提供中子源,其中子源强及能谱较反应堆中子源更具可调性。中子靶物理计算分析是加速器中子源设计的基础,为其提供粒子能量、流强等参数需求分析,并为靶体结构尺寸设计、中子慢化和屏蔽分析等提供前端参数。本文利用MCNPX蒙特卡罗程序,通过对质子打靶的中子产额和能谱、靶体能量沉积、打靶后靶材放射性活度和中子出射空间角分布等进行研究,提出能量2.5 MeV质子轰击100~200 μm锂靶的设计,并用模拟计算数据论证其合理性。该设计中子源在1 mA流强质子轰击下,源强可达9.74×1011 s-1;拟设计15 mA、2.5 MeV质子束产生的中子源,在治疗过程中靶材放射性活度累积最大值约为1.44×1013 Bq。  相似文献   

13.
采用组合叠层CR-39固体径迹探测器实验方法测量了加速器D(d,n)反应产生的5MeV与2MeV准单能中子能谱。进而测量了入射氘离子能量为3MeV时加速器厚铍靶9Be(d,n)反应的中子能谱,与已有的飞行时间法的测量结果基本相符。在此基础上,用该法又测量了入射氘离子能量为1.5MeV时加速器厚铍靶9Be(d,n)反应的中子能谱,结果符合较低能量氘离子与厚铍靶发生9Be(d,n)的核反应的物理过程。  相似文献   

14.
基片镀膜是氘/氚靶制备过程的重要工序,靶膜的性能直接影响充氘及中子实验。本文对去除表面污渍和氧化层后的基片采用磁控溅射进行镀膜,研制性能优良的强流氘氚中子源用靶膜。采用扫描电镜观察膜层表面外观形貌,根据称重法用电子天秤测量理论膜厚,使用划痕仪分析膜层结合力,并通过电子探针分析膜层的杂质元素含量来表征靶膜的性能。结果表明,磁控溅射镀膜后膜层颗粒度细小、分布均匀,同时膜层表面杂质小于6.0%。镀膜后基片的活化充氘实验表明,氘/钛(原子比)最高可达1.98,满足中子产额实验要求,可进行后续中子实验。  相似文献   

15.
氘氚中子源通过氘离子束轰击氚靶片引发氘氚聚变反应,产生14.1 MeV高能中子。高能中子调控后亦可产生宽能谱中子场,是先进核能及核技术交叉应用研究的重要实验平台。作为中子源的核心部件,氚靶片由靶片基底和储氚薄膜组成,其中储氚薄膜的核素组成会影响氚原子密度与入射氘离子射程,最终直接关系到中子源强的高低。本文基于MATLAB和SRIM软件建立氘氚中子源强计算模型,对比计算了不同新型储氢金属材料组成的储氚薄膜(TiT_2、MgT_2、Mg_2NiT_4、VT_2、LiBT_4和LaNi_5T_6)和不同氘离子能量对中子源强的影响。计算结果表明,在同等束流条件下,MgT_2的中子源强相比TiT_2可提高30%以上,且制备工艺较为成熟,是氘氚中子源的优秀储氚薄膜材料。  相似文献   

16.
一、前言 中子发生器是一种产额不稳定的中子源,因受束流强度,加速高压、氚钛靶的新旧程度等因素影响,即使在完全相同的参数下工作,也很难保持产额一致。 中子产额(或注量)的测量方法主要有:活化法,望远镜法,长(硼)中子计数器和伴随粒子法等。本工作主要采用伴随粒子法,为校验其准确性也研制了闪烁望远镜计数器。 伴随粒子法和望远镜法都是快中子注量的绝对测量方法,前者是根据装置记录到的某  相似文献   

17.
用阈探测器中子活化法测量了50MeV/u ~(12)C离子实验靶区的次级中子平均注量率、角分布、粗略能谱,并估算了重离子反应的中子产额。  相似文献   

18.
采用自成靶工艺,研制了SNT-DT/25型密封氘氚中子管,对其工作温度、使用寿命、功耗、中子产额及其稳定性等性能参数进行了测试。结果表明:中子管使用温度可达175℃,最高中子产额≥1×109 n/s,中子产额浮动≤10%;在靶极电压-80kV、阳极电流300μA、靶流80μA的工作条件下,中子产额可达1×108 n/s,中子管的性能指标完全满足中子测井使用要求。此外,本文还对中子产额随靶极电压、阳极电流的影响进行了分析。  相似文献   

19.
高能中子源是研究高能太空宇宙射线中子对人体和电子仪器辐射损伤的必备装置,基于高能电子加速器的光中子源是目前能够提供较高能量白光中子的方式之一。本工作以清华大学先进加速器实验室的激光电子加速器束流参数为基础,借助Geant4对产生的光中子的能量特性、产额特性、角分布特性、时间特性进行了分析。模拟结果表明,Φ2 cm×2 cm的圆柱体Ta靶时,150 MeV电子束流可产生最高能量约为110 MeV、中子产额约为1.2×10~5n/10~7e-、出射时间在0~100 ns之间呈负指数分布的几乎各向同性的光中子。根据拟合的中子能量-出射时间离散指数函数,估算得到对产生的1~100MeV中子,在飞行距离为5m时中子飞行时间的时间分辨率好于2.23%。本工作为该加速器的光中子产生和实验测量工作提供了参考依据。  相似文献   

20.
设计和实验研制了用于脉冲中子源中子产额绝对测量的阵列BF3 计数器,并在加速器上进行了DT中子灵敏度标定实验。给出了该计数器测量DT脉冲中子产额的测量结果和测量不确定度,并与其它测量方法的测量结果进行了比较。实验验证了BF3 设计的可行性和DT脉冲中子产额测量数据的可靠性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号