共查询到18条相似文献,搜索用时 59 毫秒
1.
特征提取是人脸识别的一个重要研究领域,能否有效地提取判别特征是决定人脸识别算法好坏的关键。一般的人脸识别算法都是基于图像向量的,需要将2维人脸图像压缩成1维向量,这不仅破坏了像素之间原有的空间结构关系,而且转换后的向量维数过高。为了避免这种情况,提出了一种直接基于图像矩阵的人脸识别算法——2维保局投影算法。由于该算法是在保局投影的基础上进行扩展,使其可以直接面向2维图像矩阵进行处理,同时在构建相似矩阵的时候引入了样本类别信息,因而可有效地提取人脸图片的2维判别特征。另外还采用最小近邻分类器估算识别率。在AT&T人脸库的实验结果表明,与Eigenface、Fisherface以及Laplacianface算法相比,该方法具有较好的识别率。 相似文献
2.
3.
提出了一种基于图像分块的二维保局投影(分块2DLPP)的人脸识别方法.先对原始图像矩阵进行分块,然后对分块子图像施行2DLPP方法,再将各个分块按照一定的次序整合起来进行特征提取,从而实现图像降维.该方法能有效地提取图像的局部特征.实验表明:该方法在识别性能上优于2DLPP方法. 相似文献
4.
面向酉子空间的二维判别保局投影的人脸识别* 总被引:1,自引:0,他引:1
保局投影算法(LPP)在人脸识别中具有较好的识别性能,但它是一种非监督学习,并且在具体实现时需要把图像转换为向量,破坏了图像的像素结构,这显然不利于模式识别。针对这些问题,提出基于酉子空间的二维判别保局算法,不仅在判别保局算法的基础上增加了类别信息,而且直接在灰度矩阵上进行水平和垂直方向上的二维保局投影。该方法构造酉空间上的复向量后再运用线性判别分析提取特征。在ORL、Yale和XJTU人脸库中验证了算法的正确性和有效性,其识别率比传统的2DLDA和2DLPP等方法提高4~5个百分点。 相似文献
5.
完备鉴别保局投影人脸识别算法 总被引:15,自引:0,他引:15
为了充分利用保局总体散布主元空间内的鉴别信息进行人脸识别,提出了一种完备鉴别保局投影(complete discriminant locality preserving projections,简称CDLPP)人脸识别算法.鉴于Fisher鉴别分析和保局投影已经被广泛的应用于人脸识别,完备鉴别保局投影(locality preserving projections,简称LPP)算法将这两者结合起来,分析了保局类内散布、类间散布和总体散布的主元空间和零空间内包含的鉴别信息.该算法采用奇异值分解(singular value decomposition,简称SVD),去除了不含任何鉴别信息的保局总体散布的零空间;分别在保局类内散布的主元空间和零空间提取规则鉴别特征和不规则鉴别特征;用串联的方式在特征层融合规则鉴别特征和不规则鉴别特征形成完备的鉴别特征进行人脸识别.在ORL库、FERET子库和PIE子库上的大量识别实验充分表明了完备鉴别保局投影算法的性能优于线性鉴别分析、保局投影和鉴别保局投影等现有的子空间人脸识别算法,验证了算法的有
效性. 相似文献
6.
提出一种快速的完备鉴别保局投影算法(FCDLPP)。FCDLPP算法只需使用一次瘦QR分解就可求得保局类内散布的零空间的鉴别矢量,然后再进行一次广义特征值分解求得保局类内散布的主元空间的鉴别矢量。另外,FCDLPP对零空间的不规则鉴别特征和主元空间的规则鉴别特征进行融合。理论分析和实验结果表明,FCDLPP算法不论在计算复杂度还是识别率上都比完备的鉴别保局投影算法有更好的性能和效果。 相似文献
7.
8.
为了充分利用样本的类别信息,提出了一种改进的有监督保局投影人脸识别算法。利用先验类标签信息重新构造传统保局投影算法中的权重矩阵,基于改进后的保局投影算法得到变换矩阵;用线性鉴别的思想筛选出变换矩阵中的最优基向量,构成最终的变换矩阵。把训练样本和测试样本投影到由最优基向量构成的子空间得到训练样本和测试样本的特征。采用最近邻分类器分类。在ORL和FERET人脸库上的测试结果表明,算法具有较好的识别性能。 相似文献
9.
通过向二维局部保持投影(2D-LPP)算法中引入类间约束和类标识信息,得到二维判别局部保持投影(2D-DLPP)算法,使它拥有更多的判别信息。但它却面临复杂的参数选择问题,这使得它在解决识别问题时受到限制。为解决此问题,构造无参数的相似矩阵,提出无参数的二维判别局部投影(无参数2D-DLPP)算法。在Yale和ORL人脸库上的仿真实验结果表明,该算法与二维判别局部保持投影(2D-DLPP)、二维局部保持投影法(2D-LPP)和二维线性判别分析法(2D-LDA)相比能够取得更高的识别率。 相似文献
10.
11.
杨荣芳 《电脑与微电子技术》2010,(10):19-22
通常,人脸图像能够看作是嵌入到高维空间中的低维流形的点的集合。流形学习被用于很多降维方法中,局部保持投影(LPP)便是其中的一种。针对局部保持投影方法进行了研究,将局部保持投影算法融入到超分辨率方法中,并将其结合到人脸图像的复原上。介绍现有的基于LPP的人脸图像的超分辨率算法。 相似文献
12.
13.
14.
最大间距准则(MMC)的目的是在克服小样本问题的同时,寻求一组最佳鉴别矢量使得投影变化后的特征空间的类问散度最大,而且类内散度最小.文中所提出的特征提取方法与原来MMC相比,经过对原来的散度加乘权重,以及通过对参数的调整,能够在特征提取的同时更好地保持人脸图像的局部流形结构.在ORL人脸库、YALE标准人脸库和UMIST人脸库上的实验结果表明,该方法能够对光照和姿态变化具有一定的鲁棒性,能更为有效地识别人脸图像,提高识别率. 相似文献
15.
16.
局部保持投影算法(locality preserving projections,LPP)作为降维算法,在机器学习和模式识别中有着广泛应用。在识别分类中,为了更好的利用类别信息,在保持样本点的局部特征外,有效地从高维数据中提取出低维的人脸图像信息并提高人脸图像的识别率和识别速度,使分类达到一定优化,基于LPP算法结合流形学习思想,通过构造一种吸引向量的方法提出一种改进的局部保持投影算法(reformation locality preserve projections ,RLPP)。将数据集利用极端学习机分类器进行分类后,在标准人脸数据库上的进行试验,实验结果证明,改进后算法的识别率优于LPP算法、局部保持平均邻域边际最大化算法和鲁棒线性降维算法,具有较强的泛化能力和较高的识别率。 相似文献
17.
18.
提出一种基于优化局部保留投影(OLPP)的人脸表情识别方法。OLPP方法在降维过程中将图像结构信息融入LPP目标函数,通过降维处理,在获得图像结构信息的同时将投影最优化,从而能从原始表情数据中提取更多更具判决性的有效表情信息。JAFFE和CED- WYU(1.0)2个表情数据库的识别结果表明,基于OLPP的特征提取方法能有效提高识别率。 相似文献