首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
T. Dornseifer  C. Pflaum 《Computing》1996,56(3):197-213
Elliptic differential equations can be discretized with bilinear finite elements. Using sparse grids instead of full grids, the dimension of the finite element space for the 2D problem reduces fromO(N 2) toO (N logN) while the approximation properties are nearly the same for smooth functions. A method is presented which discretizes elliptic differential equations on curvilinear bounded domains with adaptive sparse grids. The grid is generated by a transformation of the domain. This method has the same behaviour of convergence like the sparse grid discretization on the unit square.  相似文献   

2.
移动对象连续k近邻(CKNN)查询是指给定一个连续移动的对象集合,对于任意一个k近邻查询q,实时计算查询qk近邻并在查询有效时间内对查询结果进行实时更新.现实生活中,交通出行、社交网络、电子商务等领域许多基于位置的应用服务都涉及移动对象连续k近邻查询这一基础问题.已有研究工作解决连续k近邻查询问题时,大多需要通过多次迭代确定一个包含k近邻的查询范围,而每次迭代需要根据移动对象的位置计算当前查询范围内移动对象的数量,整个迭代过程的计算代价占查询代价的很大部分.为此,提出了一种基于网络索引和混合高斯函数移动对象分布密度的双重索引结构(grid GMM index,GGI),并设计了移动对象连续k近邻增量查询算法(incremental search for continuous k nearest neighbors,IS-CKNN).GGI索引结构的底层采用网格索引对海量移动对象进行维护,上层构建混合高斯模型模拟移动对象在二维空间中的分布.对于给定的k近邻查询q,IS-CKNN算法能够基于混合高斯模型直接确定一个包含qk近邻的查询区域,减少了已有算法求解该区域的多次迭代过程;当移动对象和查询q位置发生变化时,进一步提出一种高效的增量查询策略,能够最大限度地利用已有查询结果减少当前查询的计算量.最后,在滴滴成都网约车数据集以及两个模拟数据集上进行大量实验,充分验证了算法的性能.  相似文献   

3.
Given k permutations of n elements, a k-tuple of intervals of these permutations consisting of the same set of elements is called a common interval. We present an algorithm that finds in a family of k permutations of n elements all z common intervals in optimal O(kn+z) time and O(n) additional space. Additionally, we show how to adapt this algorithm to multichromosomal and circular permutations.  相似文献   

4.
The two dimensional range minimum query problem is to preprocess a static m by n matrix (two dimensional array) A of size N=mn, such that subsequent queries, asking for the position of the minimum element in a rectangular range within A, can be answered efficiently. We study the trade-off between the space and query time of the problem. We show that every algorithm enabled to access A during the query and using a data structure of size O(N/c) bits requires Ω(c) query time, for any c where 1≤cN. This lower bound holds for arrays of any dimension. In particular, for the one dimensional version of the problem, the lower bound is tight up to a constant factor. In two dimensions, we complement the lower bound with an indexing data structure of size O(N/c) bits which can be preprocessed in O(N) time to support O(clog 2 c) query time. For c=O(1), this is the first O(1) query time algorithm using a data structure of optimal size O(N) bits. For the case where queries can not probe A, we give a data structure of size O(N⋅min {m,log n}) bits with O(1) query time, assuming mn. This leaves a gap to the space lower bound of Ω(Nlog m) bits for this version of the problem.  相似文献   

5.
Thedistance transform(DT) is an image computation tool which can be used to extract the information about the shape and the position of the foreground pixels relative to each other. It converts a binary image into a grey-level image, where each pixel has a value corresponding to the distance to the nearest foreground pixel. The time complexity for computing the distance transform is fully dependent on the different distance metrics. Especially, the more exact the distance transform is, the worse execution time reached will be. Nowadays, quite often thousands of images are processed in a limited time. It seems quite impossible for a sequential computer to do such a computation for the distance transform in real time. In order to provide efficient distance transform computation, it is considerably desirable to develop a parallel algorithm for this operation. In this paper, based on the diagonal propagation approach, we first provide anO(N2) time sequential algorithm to compute thechessboard distance transform(CDT) of anN×Nimage, which is a DT using the chessboard distance metrics. Based on the proposed sequential algorithm, the CDT of a 2D binary image array of sizeN×Ncan be computed inO(logN) time on the EREW PRAM model usingO(N2/logN) processors,O(log logN) time on the CRCW PRAM model usingO(N2/log logN) processors, andO(logN) time on the hypercube computer usingO(N2/logN) processors. Following the mapping as proposed by Lee and Horng, the algorithm for the medial axis transform is also efficiently derived. The medial axis transform of a 2D binary image array of sizeN×Ncan be computed inO(logN) time on the EREW PRAM model usingO(N2/logN) processors,O(log logN) time on the CRCW PRAM model usingO(N2/log logN) processors, andO(logN) time on the hypercube computer usingO(N2/logN) processors. The proposed parallel algorithms are composed of a set of prefix operations. In each prefix operation phase, only increase (add-one) operation and minimum operation are employed. So, the algorithms are especially efficient in practical applications.  相似文献   

6.
MAAN: A Multi-Attribute Addressable Network for Grid Information Services   总被引:14,自引:0,他引:14  
Recent structured Peer-to-Peer (P2P) systems such as Distributed Hash Tables (DHTs) offer scalable key-based lookup for distributed resources. However, they cannot be simply applied to grid information services because grid resources need to be registered and searched using multiple attributes. This paper proposes a Multi-Attribute Addressable Network (MAAN) that extends Chord to support multi-attribute and range queries. MAAN addresses range queries by mapping attribute values to the Chord identifier space via uniform locality preserving hashing. It uses an iterative or single attribute dominated query routing algorithm to resolve multi-attribute based queries. Each node in MAAN only has O(logN) neighbors for N nodes. The number of routing hops to resolve a multi-attribute range query is O(logN+N×smin), where smin is the minimum range selectivity on all attributes. When smin=, it is logarithmic to the number of nodes, which is scalable to a large number of nodes and attributes. We also measured the performance of our MAAN implementation and the experimental results are consistent with our theoretical analysis.  相似文献   

7.
《国际计算机数学杂志》2012,89(3-4):293-305
In this paper, we present cyclic reducation and FARC algorithms for solving spline collocation system. The costs of these algorithms are 0(N 2logN) and O(N 2log logN) respectively, for an N x N grid.  相似文献   

8.
In this article, the adaptive integral method (AIM) is used to analyze large‐scale planar structures. Discretization of the corresponding integral equations by method of moment (MoM) with Rao‐Wilton‐Glisson (RWG) basis functions can model arbitrarily shaped planar structures, but usually leads to a fully populated matrix. AIM could map these basis functions onto a rectangular grid, where the Toeplitz property of the Green's function would be utilized, which enables the calculation of the matrix‐vector multiplication by use of the fast Fourier transform (FFT) technique. It reduces the memory requirement from O(N2) to O(N) and the operation complexity from O(N2) to O(N log N), where N is the number of unknowns. The resultant equations are then solved by the loose generalized minimal residual method (LGMRES) to accelerate iteration, which converges much faster than the conventional conjugate gradient method (CG). Furthermore, several preconditioning techniques are employed to enhance the computational efficiency of the LGMRES. Some typical microstrip circuits and microstrip antenna array are analyzed and numerical results show that the preconditioned LGMRES can converge much faster than conventional LGMRES. © 2008 Wiley Periodicals, Inc. Int J RF and Microwave CAE, 2009.  相似文献   

9.
Decomposing a two-dimensional window (i.e., the region specified by the cross product of two closed intervals over a given two-dimensional space) into its maximal quadtree blocks means to find the set of black quadrants that would be obtained by representing the region covered by the window using a quadtree. In this paper we propose an optimal O(n) time algorithm for decomposing a square window of size embedded in an image space of pixel elements, thus improving the O(n log log T) time algorithm of Aref and Samet [2]. As a direct consequence of this new faster algorithm, classical window operations on main memory quadtree based data structures can be solved more efficiently. In particular, we show that the exist and report queries on the incomplete pyramid [1] and on the up-down pyramid [8] can be solved in O(n) time, which is optimal. Received: 1 September 1997 / 28 October 1998  相似文献   

10.
We consider the XPath evaluation problem: Evaluate an XPath query Q on a streaming XML document D; i.e., determine the set Q(D) of document elements selected by Q. We mainly consider Conjunctive XPath queries that involve only the child and descendant axes. Previously known in-memory algorithms for this problem use O(|D|) space and O(|Q||D|) time. Several previously known algorithms for the streaming version use Ω(dn) space and Ω(dn|D|) time in the worst case; d denotes the depth of D, and n denotes the number of location steps in Q. Their exponential space requirement could well exceed the O(|D|) space used by the in-memory algorithms. We present an efficient algorithm that uses O(d|Q|+nc) space and O((|Q|+dn)|D|) time in the worst case; c denotes the maximum number of elements of D that can be candidates for output, at any one instant. For some worst case Q and D, the memory space used by our algorithm matches our lower bound proved in a different paper; so, our algorithm uses optimal memory space in the worst case.  相似文献   

11.
The finite element method has been used to find an approximate lumped parameter model of a non-linear distributed parameter system. A one dimensional non-linear dispersion system is considered. The space domain is divided into a finite set of k elements. Each element, has n nodes. Within each element the concentration is represented by C(x,t)(e) = [N][C] T where [N] = [n1(x),n2(x), [tdot] nn(x)] and [C] = [C1(t),C2(t), [tdot] Cn(t)]. By using Galerkin's criterion a set of (k × n ? n+ 1) first order differential equations are obtained for Ci(t). These equations are solved by an iterative method. The concepts are illustrated by an example taking five three-node elements in the space domain. The results are compared with those obtained by a finite difference method. It is shown that the finite element method can be used effectively in modelling of a distributed system by a lumped system.  相似文献   

12.
We consider the problem of indexing a set of objects moving in d-dimensional spaces along linear trajectories. A simple external-memory indexing scheme is proposed to efficiently answer general range queries. The following are examples of the queries that can be answered by the proposed method: report all moving objects that will (i) pass between two given points within a specified time interval; (ii) become within a given distance from some or all of a given set of other moving objects. Our scheme is based on mapping the objects to a dual space, where queries about moving objects are transformed into polyhedral queries concerning their speeds and initial locations. We then present a simple method for answering such polyhedral queries, based on partitioning the space into disjoint regions and using a B+-tree to index the points in each region. By appropriately selecting the boundaries of each region, we guarantee an average search time that matches a known lower bound for the problem. Specifically, for a fixed d, if the coordinates of a given set of N points are statistically independent, the proposed technique answers polyhedral queries, on the average, in O((N/B)1−1/d⋅(log B N)1/d+K/B) I/O's using O(N/B) space, where B is the block size, and K is the number of reported points. Our approach is novel in that, while it provides a theoretical upper bound on the average query time, it avoids the use of complicated data structures, making it an effective candidate for practical applications. The proposed index is also dynamic in the sense that it allows object insertion and deletion in an amortized update cost of log B(N) I/O's. Experimental results are presented to show the superiority of the proposed index over other methods based on R-trees. recommend Ahmed Elmagarmid  相似文献   

13.
14.
基于语义单元表示树剪枝的高速多语言机器翻译   总被引:9,自引:0,他引:9  
高小宇  高庆狮  胡玥  李莉 《软件学报》2005,16(11):1909-1919
提出一种基于语义单元表示树剪枝的高速多语言机器翻译方法.此方法是一种将汉语翻译到其他语种不需要先进行汉语切分的多语言机器翻译方法.而且翻译时间为O(L)而不是O(LN),其中,L是文本的长度,N是语义单元库中语义单元的数量,一般有数十万或者数百万.  相似文献   

15.
We present three explicit schemes for distributingM variables amongN memory modules, whereM=Θ(N 1.5),M = Θ(N 2), andM=Θ(N 3), respectively. Each variable is replicated into a constant number of copies stored in distinct modules. We show thatN processors, directly accessing the memories through a complete interconnection, can read/write any set ofN variables in worst-case timeO (N 1/3),O(N 1/2), andO(N 2/3), respectively for the three schemes. The access times for the last two schemes are optimal with respect to the particular redundancy values used by such schemes. The address computation can be carried out efficiently by each processor without recourse to a complete memory map and requiring onlyO(1) internal storage. This paper was partially supported by NFS Grants CCR-91-96152 and CCR-94-00232, by ONR Contract N00014-91-J-4052, ARPA Order 8225, and by the ESPRIT III Basic Research Programme of the EC under Contract No. 9072 (Project GEPPCOM). Results reported here were presented in preliminary form at the 10th Symposium on Theoretical Aspects of Computer Science (Würzburg, Germany, 1993), and at the 5th ACM Symposium on Parallel Algorithms and Architectures (Velen, Germany, 1993).  相似文献   

16.
Li  Jie  Pan  Yi  Shen  Hong 《The Journal of supercomputing》2003,24(3):251-258
Topological sort of an acyclic graph has many applications such as job scheduling and network analysis. Due to its importance, it has been tackled on many models. Dekel et al. [3], proposed an algorithm for solving the problem in O(log2 N) time on the hypercube or shuffle-exchange networks with O(N 3) processors. Chaudhuri [2], gave an O(log N) algorithm using O(N 3) processors on a CRCW PRAM model. On the LARPBS (Linear Arrays with a Reconfigurable Pipelined Bus System) model, Li et al. [5] showed that the problem for a weighted directed graph with N vertices can be solved in O(log N) time by using N 3 processors. In this paper, a more efficient topological sort algorithm is proposed on the same LARPBS model. We show that the problem can be solved in O(log N) time by using N 3/log N processors. We show that the algorithm has better time and processor complexities than the best algorithm on the hypercube, and has the same time complexity but better processor complexity than the best algorithm on the CRCW PRAM model.  相似文献   

17.
This paper presents a new systolic algorithm for thecompletesolution of a system ofNlinear equations in (N2/2 +O(N)) time steps using 2Nprocessing elements (PEs). It is based on a variant of the Gaussian elimination (GE) algorithm called the successive GE and is faster than any existing GE based algorithm usingO(N) PEs. We also suggest two fault tolerant schemes that tolerate up toNPE failures. The first scheme is a time redundancy based approach with no hardware overhead and 100% time overhead. This scheme can tolerate up toNPE failures. The second scheme is based on algorithm based fault tolerance (ABFT) and usesNextra PEs to tolerate up toN− 1 PE failures with very little time overhead. The number of errors that can be detected/corrected in both schemes is more than that in any existing fault tolerant systolic array.  相似文献   

18.
We give an algorithm to compute the subset partial order (called the subset graph) for a family F of sets containing k sets with N elements in total and domain size n. Our algorithm requires O(nk2/logk) time and space on a Pointer Machine. When F is dense, i.e. N=Θ(nk), the algorithm requires O(N2/log2N) time and space. We give a construction for a dense family whose subset graph is of size Θ(N2/log2N), indicating the optimality of our algorithm for dense families. The subset graph can be dynamically maintained when F undergoes set insertions and deletions in O(nk/logk) time per update (that is sub-linear in N for the case of dense families). If we assume words of b?k bits, allow bits to be packed in words, and use bitwise operations, the above running time and space requirements can be reduced by a factor of blog(k/b+1)/logk and b2log(k/b+1)/logk respectively.  相似文献   

19.
李肯立  赵欢  李仁发  李庆华 《软件学报》2007,18(6):1319-1327
将串行动态二表算法应用于并行三表算法的设计中,提出一种求解背包、精确的可满足性和集覆盖等背包类NP完全问题的并行三表六子表算法.基于EREW-PRAM模型,该算法可使用O(2n/8)的处理机在O(27n/16)的时间和O(213n/48)的空间求解n维背包类问题,其时间-空间-处理机折衷为O(25n/6).与现有文献的性能对比分析表明,该算法极大地提高了并行求解背包类问题的时间-空间-处理机折衷性能.由于该算法能够破解更高维数的背包类公钥和数字水印系统,其结论在密钥分析领域具有一定的理论和实际意义.  相似文献   

20.
《Pattern recognition》1986,19(3):221-228
The relative neighbourhood graph (RNG) of a set of N points connects the relative neighbours, i.e. a pair of points is connected by an edge if those points are at least as close to each other as to any other point. The paper presents two new algorithms for constructing RNG in two-dimensional Euclidean space. The method is to determine a supergraph for RNG which can then be thinned efficiently from the extra edges. The first algorithm is simple, and works in O(N2) time. The worst case running time of the second algorithm is also O(N2), but its average case running time is O(N) for points from a homogeneous planar Poisson point process. Experimental tests have shown the usefulness of the approach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号