首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This article considers optimization procedures for friction stir welding (FSW) in 5083-H321 aluminum alloy, via control of weld process parameters and tool design modifications. It demonstrates the potential utility of the ??force footprint?? (FF) diagram in providing a real-time graphical user interface (GUI) for process optimization of FSW. Multiple force, torque, and temperature responses were recorded during FS welding using 24 different tool pin geometries, and these data were statistically analyzed to determine the relative influence of a number of combinations of important process and tool geometry parameters on tensile strength. Desirability profile charts are presented, which show the influence of seven key combinations of weld process variables on tensile strength. The model developed in this study allows the weld tensile strength to be predicted for other combinations of tool geometry and process parameters to fall within an average error of 13%. General guidelines for tool profile selection and the likelihood of influencing weld tensile strength are also provided.  相似文献   

2.
A computational fluid dynamics (CFD) model is presented for simulating the material flow and heat transfer in the friction stir welding (FSW) of 6061-T6 aluminum alloy (AA6061). The goal is to utilize the 3-D, numerical model to analyze the viscous and inertia loads applied to the FSW tool by varying the welding parameters. To extend the FSW process modeling, in this study, the temperature-dependant material properties as well as the stick/slip condition are considered where the material at the proximity of the FSW tool slips on the lower pressure regions. A right-handed one-way thread on a tilted FSW tool pin with a smooth, concaved shoulder is, additionally, considered to increase the accuracy of the numerical model. In addition, the viscous and frictional heating are assumed as the only sources of heat input. In the course of model verification, good agreements are found between the numerical results and the experimental investigations.  相似文献   

3.
采用商用CFD软件包中的FLUENT软件对2A14铝合金搅拌摩擦点焊过程中材料的流动情况进行了三维数值摸拟.为分析搅拌头轴肩底面轮廓对材料流动的影响,分别建立了平面轴肩和凹面轴肩.当采用凹面轴肩时,材料流动状况更明显.为分析搅拌针的形状对点焊稳态过程流场的影响,建立了圆柱形、三角形和方形三种不同形状的搅拌针模型.与圆柱形搅拌针相比,三角形和方形搅拌针引起的材料流动的范围更大.本文在计算过程中,没有考虑热耗散.  相似文献   

4.
This study applied powder-tracing techniques to mount Cu and W powders on A6061-T6 aluminum sheets to investigate the material flow mechanism of friction stir spot welding (FSSW) using various geometric tools. The experimental results showed that the geometry of the tools plays a crucial role and determines the entrances of material flow during FSSW. It was believed that instantaneous voids were filled up with material flow in all directions for triangular pins, and the voids were located at the pin bottom for cylindrical pins. In accordance with the plastic rule of material flow, the pressure gradient is the necessary condition to cause material flow during FSSW; therefore, the transient constraint space (TCS) is required to generate pressure in this space. Enlargement of the TCS accompanies the evolution of the stir zone (SZ). A generated void causes a steep pressure gradient, which is regarded as the entrance of material flow. A tool with screw threads causes downward driving force, which determines the intermixing behavior between the upper and lower sheets, and also affects the size of the SZs.  相似文献   

5.
In this research, the three-dimensional flow of metal in friction stir welding (FSW) has been simulated based on computational fluid dynamics. Conservation equations of mass, momentum, and energy were solved in three dimensions. The interactive force was imposed as boundary conditions on the tool/material boundary in the model. The strain rate- and temperature-dependent non-Newtonian viscosity was adopted for the calculation of metal flow. The distribution of temperature, velocity, and strain rate were simulated based on the above models. The simulated temperature distribution agreed well with the experimental results. The simulation results showed that the velocity on the pin was much higher than that on the shoulder. From the comparison between the simulation results and the experiments results, contours line, corresponding to strain rate = 4 s?1, reflected reasonably well the shape of stir zone, especially at the ground portion.  相似文献   

6.
建立4mm厚TC4钛合金搅拌摩擦焊接热输入数学模型,并将模型应用于焊接动态过程温度场仿真,通过试验及有限元模拟进行验证.结果表明,在动态分析过程中,热源恒速移动,工件的温度峰值逐渐平稳,工件温度分布相对稳定,此时搅拌头前端和后端的工件温度分布有所不同,前端温度变化较快,温度梯度相对较大,后端温度变化较慢,高温范围较大.  相似文献   

7.
搅拌针形状对搅拌摩擦焊焊缝S曲线形成的影响   总被引:2,自引:1,他引:1  
采用四种不同形状搅拌针的搅拌头进行搅拌摩擦焊试验,研究了搅拌针形状对LF6铝合金搅拌摩擦焊焊缝S曲线形成的影响.结果表明:通过改变搅拌针形状可以改变焊缝塑化金属的流动行为及结合面材料的破碎程度,从而影响S曲线的形成.当焊接参数一定时,在光面搅拌针中,圆锥光面搅拌针较圆柱光面搅拌针更易形成S曲线;表面带螺纹搅拌针中,圆柱右旋螺纹搅拌针较圆柱左旋螺纹搅拌针更易形成S曲线.搅拌针形状不变,降低焊接速度,可以改善焊缝塑化金属流动性,使结合面材料的分布不连续,S曲线逐渐消失.  相似文献   

8.
In this study, the dissimilar friction stir welding(FSW) butt joints between aluminum alloy 5754-H114 and commercially pure copper were investigated. The thickness of welded plates was 4 mm and the aluminum plate was placed on the advancing side. In order to obtain a suitable flow and a better material mixing, a 1-mm offset was considered for the aluminum plate, toward the butt centerline. For investigating the microstructure and mechanical properties of FSWed joints, optical microscopy and mechanical tests(i.e., uniaxial tensile test and microhardness) were used, respectively.Furthermore, the analysis of intermetallic compounds and fracture surface was examined by scanning electron microscopy and X-ray diffraction. The effect of heat generation on the mechanical properties and microstructure of the FSWed joints was investigated. The results showed that there is an optimum amount of heat input. The intermetallic compounds formed in FSWed joints were Al4Cu9 and Al2Cu. The best results were found in joints with 1000 rpm rotational speed and100 mm/min travel speed. The tensile strength was found as 219 MPa, which reached 84% of the aluminum base strength.Moreover, maximum value of the microhardness of the stir zone(SZ) was attained as about 120 HV, which was greatly depended on the grain size, intermetallic compounds and copper pieces in SZ.  相似文献   

9.
An aluminum alloy and a pure copper material were butt-joined by friction stir welding and subsequently cold rolled. The cold-rolling operation proved to be very advantageous because small voids present after friction stir welding were closed, the interface area per material thickness was enlarged, a thin intermetallic layer was partitioned, and the joint was strengthened by strain hardening. Tensile test specimens fractured in the heat-affected zone in the aluminum material; tensile strengths of the joints exceeded the tensile strengths of the base materials and were as high as 335 MPa. During soft annealing of the composite material, a 6-8-μm-thick intermetallic layer was grown at the interface. Nevertheless, tensile fracture still occurred in the heat-affected zone of the aluminum material. Electrical resistivity of the joint was smaller than resistivity of the aluminum material. Production of such composite material would result in coiled sheet material that could be subjected to further treatments such as electroplating and forming operations in an efficient and economically viable manner. The new composite material is promising for emerging automotive and industrial electrical applications.  相似文献   

10.
《铸造技术》2017,(8):1995-1997
通过钛基复合材料的搅拌摩擦焊试验,研究了焊缝的宏观形貌和微观组织及成分。通过X射线衍射仪,金相显微镜和扫描电镜,分析了焊缝的物相组成,宏观形貌和显微结构,测试了焊缝的力学性能。结果表明,通过摩擦产生的热量,使得Ti与B_4C、C、LaB_6之间发生反应,进一步促进了钛基复合材料的焊缝中增强体的生成,增强体在焊缝内分布均匀,增强体在焊缝中的原位合成强化了焊缝的强度,避免了气孔、夹渣、裂纹等缺陷。  相似文献   

11.
对FSW过程数值模拟研究的进展进行了介绍和总结,认为采用流体或刚塑性体描述搅拌头周围金属,存有明显的流动区域或者流动分界面,与实际情况有较大差距.如果根据材料流动的本质,通过对材料流动的驱动力及所受约束问题,即“软性约束”问题进行研究,或许对解决现有问题、完善FSW焊缝成形理论具有巨大意义.  相似文献   

12.
Reverse dual-rotation friction stir welding (RDR-FSW) is a novel modification of conventional friction stir welding (FSW) process. During the RDR-FSW process, the tool pin and the assisted shoulder are separated and rotate with opposite direction independently, so that there are two material flows with reverse direction. The material flow and heat transfer in RDR-FSW have significant effects on the microstructure and properties of the weld joint. A 3D model is developed to quantitatively analyze the effects of the separated tool pin and the assisted shoulder which rotate in reverse direction on the material flow and heat transfer during RDR-FSW process. Numerical simulation is conducted to predict the temperature profile, material flow field, streamlines, strain rate, and viscosity distributions near the tool. The calculated results show that as the rotation speed of the tool pin increases, the temperature near the tool gets higher, the zone with higher temperature expands, and approximately symmetric temperature distribution is obtained near the tool. Along the workpiece thickness direction, the calculated material flow velocity and its layer thickness near the tool get lowered because the effect of the shoulder is weakened as the distance away from the top surface increases. The model is validated by comparing the predicted values of peak temperature at some typical locations with the experimentally measured ones.  相似文献   

13.
在TA2工业纯钛表面通过搅拌摩擦加工,利用搅拌旋转产生的纯钛表面塑形变形过程使SiC粒子进入材料表面基体组织,实现改善工业纯钛表面硬度及其耐磨性的目的。文章研究了搅拌摩擦加工后TA2工业纯钛显微组织特征,对比分析了TA2工业纯钛加入SiC粒子的搅拌摩擦加工区与未加入SiC粒子的搅拌摩擦加工区摩擦磨损及电化学腐蚀性能。结果表明:TA2工业纯钛表面经加入SiC粒子的搅拌摩擦加工后,SiC粒子被成功加入材料表层基体组织,搅拌加工区晶粒发生了剧烈的塑性变形、破碎,实现加工区组织结构的致密化和细化;经加入SiC粒子的搅拌摩擦加工后TA2工业纯钛抗摩擦磨损性能明显提高,但电化学腐蚀性能有小幅下降。  相似文献   

14.
This research proposes the “donor material” concept for reduction of tool's wear at the plunge phase by providing localized preheating at the plunge area using a softer material as a “donor.” This process generates heat in a relatively soft “donor” material, which is transferred to the much harder workpiece material by conduction. This research includes several numerical simulations of the donor material concept with different donor materials and plain carbon steel as the workpiece. A Significant decreases in both axial force and contact pressure were observed when a donor material was used in the plunge area. The decreases in both axial force and contact pressure are very likely to contribute to decreasing tool's wear.  相似文献   

15.
以轴肩端面为同心圆的带螺纹搅拌头为研究对象,利用计算流体力学软件FLUENT建立了三维塑性材料流动模型,对2024铝合金搅拌摩擦焊接过程中材料的塑性流动进行了数值模拟,研究焊接工艺参数对模拟结果的影响。结果表明,在搅拌头附近区域材料的塑性流动剧烈,且轴肩附近材料的流动速度高于搅拌针边缘材料的流动速度;随着搅拌头旋转速度的增加,搅拌头附近区域材料流动更剧烈,且高速流动的材料区域范围变大;焊接速度的提高对搅拌头及其附近区域材料的流动影响不大。  相似文献   

16.
TA2工业纯钛表面搅拌摩擦加工组织及性能   总被引:1,自引:0,他引:1  
对TA2工业纯钛成功实现了搅拌摩擦加工(Friction Stir Processing, FSP),研究FSP后搅拌区、热机影响区、热影响区组织特征,对比分析FSP加工区与母材的显微硬度及摩擦磨损性能。结果表明:TA2工业纯钛表面经FSP后,搅拌区晶粒发生了剧烈的塑性变形、混合和破碎,实现组织结构的致密化、均匀化和细化;加工区平均硬度相对母材提高37.5%,当摩擦磨损圈数分别为1000、1500、2000 r时,摩擦磨损质量损失分别比母材减少31.4%、36.6%和46.4%,经FSP后TA2工业纯钛表面硬度和抗摩擦磨损性能明显提高  相似文献   

17.
Material flow is a key phenomenon to obtain sound joints by friction stir welding (FSW), and it is highly dependent of the welded material. It is well known that the optimal FSW condition depends on the welded material. However, the material flow during FSW has not been totally clarified in spite of many researches. Especially, the material flow of steel during FSW is still unclear. It seems difficult to understand the material flow by the traditional method such as the tracer method or observation of the microstructure in the stir zone. Therefore, in this study, the material flow of steel was three dimensionally visualized by x-ray radiography using two pairs of x-ray transmission real-time imaging systems, and was then compared with the material flow of aluminum. The result revealed the effect of the welded material on the material flow during FSW.  相似文献   

18.
分别采用旋转速度为475、600和750 r/min,焊接速度为47.5和60 mm/min不同工艺参数对TA2工业纯钛板材进行搅拌摩擦加工(FSP),对不同参数下加工温度、加工后显微组织和硬度进行了分析。实验结果表明:FSP实现了组织结构的致密化和细化,搅拌头旋转速度对加工温度和加工后晶粒大小有很大影响,加工速度影响较小,旋转速度和加工速度变化对搅拌区中心硬度影响不大。  相似文献   

19.
铝合金搅拌摩擦焊接头行为分析   总被引:18,自引:7,他引:18       下载免费PDF全文
详细介绍了搅拌摩擦焊(FSW)接头塑性流变数值模拟所得到的结果,并且利用搅拌摩擦焊的“插入试验”,测量了搅拌头旋转着插入铝合金材料过程中作用在搅拌头上的作用力,并将之转化为有效的粘度值和温度输出,确定了搅拌摩擦焊过程中充分塑化区(FPZ)的材料粘性,3-D数值模拟结果显示了搅拌头肩台下大约1.5mm的紊流区域的形成;解释了在异种金属搅拌摩擦焊接过程中无序混合产生的间混薄层结构,以及局部液相形成(初始熔化)引起的搅拌头的瞬间滑移导致了在特定的温度下(Tcrit)的材料粘性迟滞。  相似文献   

20.
Bobbin tool friction stir welding(BT-FSW) is a variant of conventional friction stir welding(FSW). It can be used to weld complex curvature structures and closed sections by adding an extra shoulder instead of a rigid backing anvil, which expands the potential application of FSW in aerospace, railway, automotive and marine industries. BT-FSW has some signifi cant advantages over conventional FSW such as no root fl aws, full weld penetration, low stiff ness requirements for machines and fi xtures, balanced heat input, lower distortion and thus has broad prospects for development. At present, there have been numerous research reports on BT-FSW, but its widespread use is still restricted due to various factors such as tool life, process stability, control complexity and implementation cost. In this paper, the domestic and foreign research progress of BT-FSW is reviewed from four aspects of bobbin tool design and classifi cation, temperature fi eld and fl ow fi eld during welding, microstructure and mechanical properties of welded joints as well as industrial application, and then the possible research hotspots of BT-FSW in the future are pointed out. This paper mainly aims to help researchers have a comprehensive and in-depth understanding of BT-FSW.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号