首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A topologically mediated synthesis of porous boron nitride aerogel has been experimentally and theoretically investigated for carbon dioxide (CO2) uptake. Replacement of the carbon atoms in a precursor aerogel of graphene oxide and carbon nanotubes was achieved using an elemental substitution reaction, to obtain a boron and nitrogen framework. The newly prepared BN aerogel possessed a specific surface area of 716.56 m2/g and exhibited an unprecedented twentyfold increase in CO2 uptake over N2, adsorbing 100 cc/g at 273 K and 80 cc/g in ambient conditions, as verified by adsorption isotherms via the multipoint Brunauer-Emmett-Teller (BET) method. Density functional theory calculations were performed to give hints on the mechanism of such high selectivity of CO2 over N2 adsorption in BN aerogel, which may be due to the interaction between the intrinsic polar nature of B–N bonds and the high quadrupole moment of CO2 over N2.
  相似文献   

2.
Hollow mesoporous carbon spheres (HMCSs) have been prepared by a simplified replication route from a solid silica core/mesoporous silica shell aluminosilicate (SCMS-Al) template, which was synthesized by directly incorporating aluminum species into the mesoporous framework during template synthesis. The size of HMCSs can be tuned between 80 and 470 nm by simply changing the diameters of SCMS-Al. The HMCSs have uniform mesopores with a narrow pore size distribution (3.4-4.1 nm), and high surface area, (890-1150 m2/g) and total pore volumes (0.75-1.15 cm3/g). The techniques of N2 sorption isotherms, TEM, EDX and SEM were used to characterize the as-synthesized spheres.  相似文献   

3.
Artificial photosynthesis of hydrocarbon fuels by utilizing solar energy and CO2 is considered as a potential route for solving ever‐increasing energy crisis and greenhouse effect. Herein, hierarchical porous O‐doped graphitic carbon nitride (g‐C3N4) nanotubes (OCN‐Tube) are prepared via successive thermal oxidation exfoliation and curling‐condensation of bulk g‐C3N4. The as‐prepared OCN‐Tube exhibits hierarchically porous structures, which consist of interconnected multiwalled nanotubes with uniform diameters of 20–30 nm. The hierarchical OCN‐Tube shows excellent photocatalytic CO2 reduction performance under visible light, with methanol evolution rate of 0.88 µmol g?1 h?1, which is five times higher than bulk g‐C3N4 (0.17 µmol g?1 h?1). The enhanced photocatalytic activity of OCN‐Tube is ascribed to the hierarchical nanotube structure and O‐doping effect. The hierarchical nanotube structure endows OCN‐Tube with higher specific surface area, greater light utilization efficiency, and improved molecular diffusion kinetics, due to the more exposed active edges and multiple light reflection/scattering channels. The O‐doping optimizes the band structure of g‐C3N4, resulting in narrower bandgap, greater CO2 affinity, and uptake capacity as well as higher separation efficiency of photogenerated charge carriers. This work provides a novel strategy to design hierarchical g‐C3N4 nanostructures, which can be used as promising photocatalyst for solar energy conversion.  相似文献   

4.
A series of Bi2S3/(BiO)2CO3 composite photocatalysts with different loadings of amorphous Bi2S3 were successfully synthesized through an ultrasonic-assisted ion-exchange reaction between thioacetamide (CH3CSNH2) and (BiO)2CO3, and characterized by XRD, XPS, BET, EELS, EDX, SEM, TEM/HRTEM, UV–Vis, and photoluminescence (PL) techniques. The results of TEM/HRTEM, EELS, and EDX indicate that the composite catalyst Bi2S3/(BiO)2CO3 has been successfully synthesized with the deposited Bi2S3 present in amorphous state on the surface of (BiO)2CO3. The activities of the catalysts for RhB degradation under visible light show that the catalyst prepared under ultrasonic is more active than the one synthesized without ultrasonic. The optimized sample Bi2S3/(BiO)2CO3 (U5.0) exhibits a much higher activity, about 4.8 times to that of pure (BiO)2CO3. Based upon the band structures of Bi2S3/(BiO)2CO3, it is deduced that the migration of the visible light-induced electrons from the conduction band of Bi2S3 to that of (BiO)2CO3 should have facilitated the separation of photogenerated carriers, as confirmed by the suppressed photoluminescence spectra. Using different scavengers, the ·O2 ? and holes are clearly identified as the main oxidative species for RhB photodegradation. In light of these observations, a potential photocatalytic mechanism of RhB degradation over Bi2S3/(BiO)2CO3 is proposed.  相似文献   

5.
We describe a new approach for the synthesis of fine-particle gamma lithium aluminate, γ-LiAlO2, which involves mechanical activation of mixtures of Al(OH)3 and Li2CO3 and heat treatment of the products. The formation of γ-LiAlO2 was followed using x-ray diffraction, chemical analysis, thermal analysis, IR spectroscopy, and BET specific surface measurements. The specific surface of the synthesized γ-LiAlO2, 10 to 33 m2/g, is large enough for this material to be used as an electrolyte matrix support for molten carbonate fuel cells.  相似文献   

6.
Anatase type TiO2 nanotubes were formed by calcination of poly(vinyl alcohol)-Ti alkoxide hybrid precursor nanofibers in air. The outer and inner diameters of the TiO2 nanotubes calcined at 500 °C for 5 h were ca. 440 nm and ca. 270 nm, respectively. The specific surface area of the TiO2 nanotubes was 38.8 m2/g, and the existence of mesopores (average pore diameter, 14.8 nm) on the nanotube wall was indicated by the nitrogen adsorption isotherm (−196 °C). The photocatalysis of the TiO2 nanotubes was superior to that of commercially available anatase type TiO2 nanoparticles.  相似文献   

7.
The hierarchical CuCo2O4/C microspheres have been fabricated via a two-step method involving hydrothermal and calcination processes. SEM, TEM, HRTEM, XRD and XPS were used to characterize the morphology, structure, and composition of the materials. The CuCo2O4/C microspheres have a hierarchically flower-like structure composed of nanoparticles-stacked nanosheets. Moreover, the as-prepared double-metal oxide hierarchical microsphere composites exhibit greatly improved electrochemical performance than that of pure CuCo2O4, owing to the synergistic effect of CuCo2O4 and carbon spheres. The CuCo2O4/C 5:1 modified electrode exhibited high sensitivity of 707.71 μA mM?1cm?2 in a wide linear range from 5 to 8000 μM with detection limit of about 1.5 μM. The outstanding glucose sensing performance of CuCo2O4/C 5:1 demonstrated that this kind of spinel bimetallic oxides composites can be favorable candidates for the development of non-enzymatic sensor.  相似文献   

8.
In this paper, we demonstrate the effects of Cd-doping ZnMn2O4 on structural and electrochemical performance. Cd-doped ZnMn2O4 spheres with diameters of about 2 μm were successfully synthesized by a facile hydrothermal method at 200 °C for 18 h. The fabricated Cd-doped ZnMn2O4 samples were characterized by X-ray diffraction, scanning electron microscopy, Brunauer Emmett Teller surface area analyzer and X-ray photoelectron spectroscopy. The electrochemical performance was investigated by cyclic voltammetry and electrochemical impedance spectrometry. The experimental results show that the synthesized spherical Cd-doped ZnMn2O4 exhibit far better rate capability and cyclic stability than that of pure spinel porous ZnMn2O4 microspheres. The result of cyclic voltammetry measurement indicates that the obtained Cd-doped ZnMn2O4 microspheres exhibited the high specific capacitance of 364 Fg?1 at 2 mV/s.  相似文献   

9.
Lightweight composite hollow spheres with conductive and magnetic properties were prepared by using Hollow Glass Spheres (HGS) as substrate. The morphology, composition, conductive, and magnetic properties of the resultant products were characterized by SEM, EDX, XRD, FTIR spectra, conductivity measurement, and vibrating-sample magnetometry. Polyaniline (PANI) were in situ polymerized on HGS with increasing ratios of PANI to HGS, resulting in the enhanced conductivity of HGS/PANI composites from 1.3 × 10−2 S/cm to 4.4 × 10−2 S/cm. Lightweight glass/Fe3O4-PANI composite hollow spheres (HGS/Fe3O4-PANI) with conductivity of 5.4 × 10−3 S/cm and magnetization of 9.25 emu/g were prepared by deposition of Fe3O4 nanoparticles onto HGS via electrostatic adsorption first, and then polymerization of aniline onto HGS/Fe3O4. The glass/PANI-Fe3O4 composite hollow spheres (HGS/PANI-Fe3O4) composed of Fe3O4 as the outmost layer and PANI as the inner layer were prepared for comparison. The conductivity and magnetization of HGS/PANI-Fe3O4 were 1.1 × 10−4 S/cm and 2.61 emu/g, respectively.  相似文献   

10.
BiVO4/TiO2 nanocomposites were fabricated by a facile wet-chemical process, followed by the synthesis of TiO2 hierarchical spheres via hydrothermal method. The BiVO4/TiO2 nanocomposites were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, UV–Vis diffuse reflectance spectroscopy and X-ray photoelectron spectroscopy. The results showed that prepared TiO2 presented hierarchical spherical morphology self-assembled by nanoparticles and an anatase–brookite mixed crystal phase. The introduction of monoclinic BiVO4 components retained the hierarchical structures and expanded the light response to around 510 nm. Type II BiVO4/TiO2 heterostructured nanocomposites exhibited improved photocatalytic degradation towards methylene blue under visible-light irradiation, especially for the composite photocatalysts with atomic Ti/Bi?=?10, which showed double degradation rate than that of pure BiVO4. The enhanced photocatalytic mechanism of the heterostructured BiVO4/TiO2 nanocomposites was discussed as well.  相似文献   

11.
The challenge in the artificial photosynthesis of fossil resources from CO2 by utilizing solar energy is to achieve stable photocatalysts with effective CO2 adsorption capacity and high charge‐separation efficiency. A hierarchical direct Z‐scheme system consisting of urchin‐like hematite and carbon nitride provides an enhanced photocatalytic activity of reduction of CO2 to CO, yielding a CO evolution rate of 27.2 µmol g?1 h?1 without cocatalyst and sacrifice reagent, which is >2.2 times higher than that produced by g‐C3N4 alone (10.3 µmol g?1 h?1). The enhanced photocatalytic activity of the Z‐scheme hybrid material can be ascribed to its unique characteristics to accelerate the reduction process, including: (i) 3D hierarchical structure of urchin‐like hematite and preferable basic sites which promotes the CO2 adsorption, and (ii) the unique Z‐scheme feature efficiently promotes the separation of the electron–hole pairs and enhances the reducibility of electrons in the conduction band of the g‐C3N4. The origin of such an obvious advantage of the hierarchical Z‐scheme is not only explained based on the experimental data but also investigated by modeling CO2 adsorption and CO adsorption on the three different atomic‐scale surfaces via density functional theory calculation. The study creates new opportunities for hierarchical hematite and other metal‐oxide‐based Z‐scheme system for solar fuel generation.  相似文献   

12.
Sol-gel synthesis of titania hollow spheres   总被引:1,自引:0,他引:1  
TiO2 hollow spheres are prepared by a convenient sol-gel method at room temperature. The products were characterized by XRD, FESEM, TEM and FT-IR. It was found that these spheres are hollow inside with outer diameters of 200-500 nm. The average mesoporous diameter is about 9.8 nm. And the BET surface area and specific pore volume are about 161.9 m2/g and 0.441 cm3/g, respectively.  相似文献   

13.
This paper deals with the effects of introducing multiwall carbon nanotubes (MWCNTs) into photoanodes of dye sensitized solar cells (DSSCs). Mesoporous titanium dioxide (TiO2) nanoparticles were synthesized using sol–gel technique. TiO2/MWCNT composites were prepared by adding functionalized MWCNTs to TiO2 nanoparticles using two different surfactants (α-terpineol and Triton X-100). Nanoparticles and composites were characterized using Dynamic Light Scattering spectrophotometer, Raman spectrometer, X-ray diffractometer, field emission scanning electron microscope, Brunauer–Emmett–Teller surface area analyzer and UV–Vis spectrophotometer. FESEM depicted that particles were spherical in shape and their size decreased due to addition of MWCNTs. This was attributed to the decrease in the crystallite size which in turn confirmed by XRD. UV–Vis absorption spectra showed the better absorbance for the visible range of light, as the content of MWCNT is increased. From the Tauc plot optical band gap was calculated and noted that it declined gradually with the content of MWCNTs. BET surface area increased drastically which was attributed to the formation of more number of pores in the nanocomposites as visualized from FESEM. UV–Vis spectra of dye desorbed from the photoanode revealed that the dye adsorption increased as a function of MWCNT wt%. I–V studies were carried out under the illumination of 100 mW/cm2 simulated sunlight. Photoanodes prepared by both the methods showed better performance compared to pristine TiO2 photoanode, because of high conducting path and high surface area provided by MWCNTs. Photoanodes with 0.19 wt% MWCNTs in them were able to achieve maximum efficiency of 3.54 and 3.86% for method A and B respectively.  相似文献   

14.
A hybrid photocatalyst consisting of TiO2 and nonporous SiO2 (TiO2/CS-RH) is prepared by loading TiO2 sol on one-dimensional/three-dimensional chain (1D/3D-chain) which is synthesized from rice husk. The products are characterized by X-ray diffraction, N2-adsorption–desorption analysis and scanning electron microscopy. Meanwhile, the corresponding photocatalytic activity is evaluated by measuring the photocatalytic oxidation of rhodamine B (RhB). The results reveal that TiO2/CS-RH displays a hierarchical porous structure from micrometer to nanometer scale with high BET surface area (574.7–719.4 cm2/g). Meanwhile, the activity of TiO2/CS-RH for the photocatalytic degradation of RhB in aqueous slurry is significantly higher than that of the unsupported TiO2. The optimal TiO2 loaded on the support was two times and then treated at 600 °C for 120 min to complete the conversion of RhB. In contrast, the unsupported TiO2 photocatalyst could convert only 20% of RhB in the same irradiation time and condition.  相似文献   

15.
Ab initio molecular dynamics studies have been carried out on the room temperature ionic liquid, 1,n-butyl,3-methylimidazolium hexafluorophosphate ([bmim][PF6]) and supercritical carbon dioxide mixture at room temperature and experimental density. Partial radial distribution functions (RDF) for different sites have been computed to see the organization of CO2 molecules around the ionic liquid. Several partial RDFs around the carbon atom of CO2 molecule are compared to find out that the CO2 has specific interaction with a carbon atom present in the imidazolium ring. The CO2 is also found to be very well organized around the terminal carbon atom of the butyl chain. The partial RDFs for the oxygen atoms around oxygen and carbon atoms of the CO2 suggests that there is very good organization of CO2 molecules around themselves even in the [bmim][PF6]-CO2 mixture. The instantaneous quadrupole moment tensor has been calculated for the anion and the cation. The ensemble average of diagonal components of quadrupole moment tensor of the cation have finite values, whereas the off-diagonal components of the cation and both the diagonal and off-diagonal components of the anion have the value of zero with a large standard deviation. The CPMD studies performed on CO2 clusters reveals the greater tendency of the clusters with more CO2 units, to deviate from the linear geometry.  相似文献   

16.
The possibility of applying the P 1 approximation of the spherical harmonics method to the computation of the radiant heat transfer in heterogeneous volumes of complicated geometry is investigated. This approximation is used to evaluate the radiant heating of the surface of a spacecraft descending in the Martian atmosphere. The chemical composition of the gas heated behind the shock wave is calculated by using a kinetic model including 79 chemical reactions and ten components, such as CO2, CO, C, O, O2, C2, N, N2, CN, and NO. The optical properties are set by a spectral multigroup model computed with the help of the ASTEROID computer code with averaging over the rotational molecular spectrum structure in each group. The mechanisms of the radiant heating of the surface of descent space vehicles in the Martian atmosphere are studied.  相似文献   

17.
An activated carbon (AC) with high-porosity was prepared from Zizania latifolia leaves by a one-step method combining chemical and physical activation. K2CO3 was employed as a chemical reagent, and air as a physical agent. During the activation, several key parameters were discussed, including the effects of activation temperature, K2CO3 impregnation ratio, amount of introduced air on the surface area and pore volumes evolution of the ACs derived from the Zizania latifolia leaves. The synergistic effect between the chemical agent and the physical agent was also investigated. Under optimal activation conditions, the as-synthesized AC attained a maximum surface area up to 2481 m2/g, with 1.21 cm3/g pore volume, and it had a micro/meso porosity developed by the combining activation. The crystal sizes of the as-synthesized AC along the a- and c-axes were about 5 nm and 1–2 nm, respectively. The average thickness of the crystallites is 3–4 layers with about 0.37 nm interlayer spacing.  相似文献   

18.
《Materials Letters》2006,60(25-26):3141-3144
Microporous nitrogen-incorporated SAPO-34 molecular sieves were synthesized by thermal post-treatment of SAPO-34 in flowing dry ammonia at elevated temperatures. The results of property characterized by DRIFTS of CO2 adsorption and CO2–TPD showed that basic sites existed on the surface of nitridized samples probably due to the presence of nitrogen-containing species incorporating into the framework of SAPO-34 molecular sieves. The changes in structure of nitrogen-incorporated samples were investigated by 27Al MAS NMR, 31P MAS NMR spectra X-ray diffraction and BET surface area measurements. It was found that nitrogen-incorporated SAPO-34 still kept good crystallinity and high specific surface area of precursors. And N-containing species had incorporated into the framework of samples during nitridation, in which N atom presumably bounded to Al and P atoms formed N-containing groups, but unfortunately some of them were not ascribed.  相似文献   

19.
Hydrothermal processing followed by controlled pyrolysis of used white office paper (a globally collectable shredded paper waste) are performed to obtain high surface area carbon with hierarchical pore size distribution. The BET specific surface area of such carbon is 2341 m2 g?1. The interconnected macroporous structure along with the concurrent presence of mesopores and micropores makes the material ideal for ultracapacitor application. Such waste paper derived carbon (WPC) shows remarkable performance in all solid‐state supercapacitor fabricated with ionic liquid‐polymer gel electrolyte. At room temperature, the material exhibits a power density of 19 000 W kg?1 with an energy capability of 31 Wh kg?1. The Li‐ion electrochemical capacitor constructed using WPC as cathode also shows an excellent energy storage capacity of 61 Wh kg?1.  相似文献   

20.
《Materials Letters》2005,59(29-30):3963-3967
A new and simple method to prepare alumina containing mainly mesopores is described. This alumina has a high surface area (464 m2/g) and a large pore volume ranging from about 0.35 to 0.65 cm3/g. The present method was developed using a biopolymer (chitosan) and Al solution. The Al–chitosan solution was added to NH4OH solution in the form of drops. A hybrid macrosphere compound of aluminum hydroxide and organic polymer is formed. Through polymer elimination by thermal treatment, porous Al2O3 spheres with a high specific surface area are obtained. The Ni-impregnated Al2O3 spheres showed a high catalytic activity and stability for dry reforming of methane at 650 °C and a CH4 / CO2 = 1 molar ratio.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号