首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A reactor has been developed to produce high quality fatty acid methyl esters (FAME) from waste cooking palm oil (WCO). Continuous transesterification of free fatty acids (FFA) from acidified oil with methanol was carried out using a calcium oxide supported on activated carbon (CaO/AC) as a heterogeneous solid-base catalyst. CaO/AC was prepared according to the conventional incipient-wetness impregnation of aqueous solutions of calcium nitrate (Ca(NO3)2·4H2O) precursors on an activated carbon support from palm shell in a fixed bed reactor with an external diameter of 60 mm and a height of 345 mm. Methanol/oil molar ratio, feed flow rate, catalyst bed height and reaction temperature were evaluated to obtain optimum reaction conditions. The results showed that the FFA conversion increased with increases in alcohol/oil molar ratio, catalyst bed height and temperature, whereas decreased with flow rate and initial water content in feedstock increase. The yield of FAME achieved 94% at the reaction temperature 60 °C, methanol/oil molar ratio of 25: 1 and residence time of 8 h. The physical and chemical properties of the produced methyl ester were determined and compared with the standard specifications. The characteristics of the product under the optimum condition were within the ASTM standard. High quality waste cooking palm oil methyl ester was produced by combination of heterogeneous alkali transesterification and separation processes in a fixed bed reactor. In sum, activated carbon shows potential for transesterification of FFA.  相似文献   

2.
Three solid catalysts have been tested in the transesterification of fried oils: CaO, SrO, K3PO4. For CaO and SrO the different efficiency, between their use as powder or granules, has been examined. Another investigated aspect has been the catalytic activity at different catalyst loadings and recycles. At the end granules have been employed in a catalytic bed reactor, comparing results with batch systems. Results have shown that using catalyst as granule does not affect the yields after 3 h of reaction. The use of the catalytic bed reactor has given the possibility to perform the transesterification maintaining the catalyst separated from the reactants, without loss of efficiency; in fact the comparison between trials in batch reactor and in catalytic bed system has not shown differences in yields. After 3 h of reaction, at 65 °C, 5 wt% of catalyst, we have had the following FAME yields: 92% for CaO, 86% for SrO, 78% for K3PO4. The transesterification reaction has shown a sensitive influence respect to K3PO4 granules amount used; in fact the yield has reached the 85% using 10 wt% of catalyst. The reutilization of the catalyst, without regeneration, has shown a loss of efficiency of about 10-20% in decreasing yield.  相似文献   

3.
Rod-like CaxSiOx + 2 catalysts were synthesized by using one-pot hydrothermal method. Catalysts calcined at 550 °C were used in the transesterification reaction of soybean oil with methanol. Under methanol reflux condition, FAME yields of 82% and 95% were achieved on Ca4SiO6 in a reaction time of 1 and 2 h, separately. Also, the FAME yields on different CaxSiOx + 2 catalysts were correlated with their basic properties. Besides, a FAME yield of ca. 80% can be achieved under room temperature over Ca4SiO6 catalyst.  相似文献   

4.
In this study, transesterification of soybean oil to biodiesel using CaO as a solid base catalyst was studied. The reaction mechanism was proposed and the separate effects of the molar ratio of methanol to oil, reaction temperature, mass ratio of catalyst to oil and water content were investigated. The experimental results showed that a 12:1 molar ratio of methanol to oil, addition of 8% CaO catalyst, 65 °C reaction temperature and 2.03% water content in methanol gave the best results, and the biodiesel yield exceeded 95% at 3 h. The catalyst lifetime was longer than that of calcined K2CO3/γ-Al2O3 and KF/γ-Al2O3 catalysts. CaO maintained sustained activity even after being repeatedly used for 20 cycles and the biodiesel yield at 1.5 h was not affected much in the repeated experiments.  相似文献   

5.
This work studies the application of KNO3/CaO catalyst in the transesterification reaction of triglycerides with methanol. The objective of the work was characterizing the methyl esters for its use as biodiesel in compression ignition motors. The variables affecting the methyl ester yield during the transesterification reaction, such as, amount of KNO3 impregnated in CaO, the total catalyst content, reaction temperature, agitation rate, and the methanol/oil molar ratio, were investigated to optimize the reaction conditions.The evolution of the process was followed by gas chromatography, determining the concentration of the methyl esters at different reaction times. The biodiesel was characterized by its density, viscosity, cetane index, saponification value, iodine value, acidity index, CFPP (cold filter plugging point), flash point and combustion point, according to ISO norms. The results showed that calcium oxide, impregnated with KNO3, have a strong basicity and high catalytic activity as a heterogeneous solid base catalyst.The biodiesel with the best properties was obtained using an amount of KNO3 of 10% impregnated in CaO, a methanol/oil molar ratio of 6:1, a reaction temperature of 65 °C, a reaction time of 3.0 h, and a catalyst total content of 1.0%. In these conditions, the oil conversion was 98% and the final product obtained had very similar characteristics to a no. 2 diesel, and therefore, these methyl esters might be used as an alternative to fossil fuels.  相似文献   

6.
Oil transesterification over calcium oxides modified with lanthanum   总被引:2,自引:0,他引:2  
Investigations were conducted on a series of calcium and lanthanum oxides catalyst for biodiesel production. Mixed oxides catalyst showed a superior transesterification activity over pure calcium or pure lanthanum oxide catalysts. The catalyst activity was correlated with surface basicity and specific surface areas. The effects of water and free fatty acids (FFA) levels in oil feedstock, water and CO2 in air, mass ratio of catalyst, molar ratio of oil to methanol, and reaction temperature on fatty acid methyl ester (FAME) yield were investigated. Under optimal conditions, FAME yields reached 94.3% within 60 min at 58 °C. Mixed CaO-La2O3 catalyst showed a high tolerance to water and FFA, and could be used for converting pure or diluted unrefined/waste oils to biodiesel.  相似文献   

7.
Zinc oxide, obtained by thermal decomposition of zinc oxalate, has been impregnated with different amounts of calcium oxide, and used as solid catalyst for transesterification processes. Catalysts have been characterized by chemical analysis, XRD, XPS, FT-IR, SEM, N2 adsorption–desorption at 77 K and CO2-TPD. The catalytic behaviour has been evaluated by choosing two transesterification processes: a simple model such as the reaction between ethyl butyrate and methanol and the production of biodiesel from sunflower oil and methanol. Calcium oxide is stabilized by filling the mesoporous network of ZnO, as reveal the corresponding pore size distributions, thus avoiding the lixiviation of the active phase in the reaction medium. These supported CaO catalysts, thermally activated at 1073 K, can give rise to FAME (fatty acid methyl esters) yield higher than 90%, after 2 h of reaction, when a methanol:oil molar ratio of 12 and 1.3 wt% of the catalyst with a 16 wt% CaO were employed.  相似文献   

8.
As a precursor of the practical catalyst to utilize solid base catalysis of calcium oxide for biodiesel production, crushed lime stone whose size ranged from 1.0 to 1.7 mm was used in this study. The precursor was turned into the practical catalyst by only calcination at 1173 K. At 333 K under atmospheric pressure, rapeseed oil was transesterified with methanol in the presence of the practical catalyst, on a laboratory scale pilot plant characterized by batch unit consisting of a circulating stream passing through the column reactor. In the early trial, the yield of fatty acid methyl esters (FAME) produced after 2 h was around 60%. Moreover, the column reactor was blocked up due to serious agglomeration of the practical catalyst when the reaction time was extended by an extra hour. These drawbacks were hurdled by improving the reacting condition. As a result, the yield of FAME reached 96.5% at 2 h of the reaction time, and the good reaction efficiency went on for the successive 10 operations, without exchanging the catalyst. However, on and after the 11th operation, the reaction efficiency was gradually deteriorated. After the transesterifying operation was successively repeated 17 times, the practical catalyst was withdrawn from the column reactor in order to investigate its deactivation. Additionally, the transesterification of waste cooking oil was performed on the laboratory scale pilot plant in the same manner.  相似文献   

9.
Transesterification of sunflower oil with methanol to form biodiesel was performed in a countercurrent trickle-bed reactor, using calcium oxide particles 1-2 mm in diameter as a packed, solid base catalyst. Although biodiesel production generally requires a reaction temperature below the boiling point of methanol to maintain a heterogeneous, liquid-liquid reaction, in the present study the reaction temperature was varied from 80 to 140 °C to confirm the progress of transesterification in a gas-liquid-solid phase reaction system. Oil droplets released from a thin tube flowed downward, while vaporized methanol flowed upward in the bed. The effects of the reaction temperature, methanol and oil flow rates, and the bed height on the FAME yield were investigated. The oil residence time in the reactor, which was controlled by changing both the oil flow rate and the bed height, had a significant effect on the FAME yield. In addition, the FAME yield increased with reaction temperature and was maximal at 373 K due to the change in residence time associated with reduced oil viscosity at higher temperatures. The FAME yield was 98% at a reaction temperature of 373 K when the methanol and oil flow rates were 3.8 and 4.1 mL/h, respectively.  相似文献   

10.
This study examined the effect of a heterogeneous base catalyst on the transesterification of soybean oil assisted by microwave irradiation. The results showed that nanopowder calcium oxide (nano CaO) was very efficient in converting soybean oil to biodiesel, and microwave irradiation is more efficient than the conventional bath for biodiesel production. However, the water content of methanol can not improve the conversion rate catalyzed by nano CaO.The suitable reaction conditions that can reach a 96.6% of conversion rate were methanol/oil molar ratio, 7:1; amount of catalyst used, 3.0 wt.%; reaction temperature, 338 K; and reaction time, 60 min. The biodiesel produced is within the limits prescribed by the standard of EN-14214.  相似文献   

11.
The present study reports the results of kinetics study of acid base catalyzed two step transesterification process of waste cooking oil, carried out at pre-determined optimum temperature of 65 °C and 50 °C for esterification and transesterification process respectively under the optimum condition of methanol to oil ratio of 3:7 (v/v), catalyst concentration 1%(w/w) for H2SO4 and NaOH and 400 rpm of stirring. The optimum temperature was determined based on the yield of ME at different temperature. Simply, the optimum concentration of H2SO4 and NaOH was determined with respect to ME Yield. The results indicated that both esterification and transesterification reaction are of first order rate reaction with reaction rate constant of 0.0031 min− 1 and 0.0078 min− 1 respectively showing that the former is a slower process than the later. The maximum yield of 21.50% of ME during esterification and 90.6% from transesterification of pretreated WCO has been obtained. This is the first study of its kind which deals with simplified kinetics of two step acid-base catalyzed transesterification process carried under the above optimum conditions and took about 6 h for complete conversion of TG to ME with least amount of activation energy. Also various parameters related to experiments are optimized with respect to ME yield.  相似文献   

12.
We used a microwave heating system to increase Jatropha biodiesel yield, and to reduce both reaction time and energy consumption. The feasibility of converting natural and non-edible feedstocks including arcuate mussel shells and dolomitic rocks, into a novel high-performance, reusable, low-cost and heterogeneous catalyst for the synthesis of biodiesel was also explored. Arcuate mussel shells and dolomitic rocks were first ground and calcined at 900 °C for 2 h. After calcination, calcium oxide (CaO) or a mixed oxide of calcium and magnesium (CaO·MgO) was obtained as white powder, which was then chemically activated to improve the physical, chemical and surface properties, and catalytic activities of the catalysts. By heating CaO from waste shells in an excess dehydrated methanol under 65 °C at 8 h with nitrogen (N2) flow, calcium methoxide (Ca(OCH3)2) catalyst was prepared. The CaO from natural rocks was, however, turned into calcium glyceroxide complex, by combining with methanol and glycerol of the by-product. It was determined that calcium glyceroxide (Ca[O(OH)2C3H5]2) was formed during the transesterification and acted as the most active phase. Catalyst characterization was by X-ray diffraction (XRD), X-ray fluorescence (XRF), scanning electron microscope (SEM), energy dispersive spectroscopy (EDS), Fourier transform infrared spectroscopy (FT-IR), and Brunauer-Emmett-Teller (BET) surface area and basic strength measurements. The reaction parameters, including reaction time, microwave power, methanol/oil molar ratio, catalyst dosage and catalyst reusability, were studied for fatty acid methyl esters (FAME) yield. The results indicated that Ca(OCH3)2 and Ca[O(OH)2C3H5]2 catalysts derived from waste shells and natural rocks showed good reusability, high energy efficient, environmental-friendly, low cost and facile route for the synthesis of biodiesel.  相似文献   

13.
In this study, the catalytic activity of dolomite was evaluated for the transesterification of canola oil with methanol to biodiesel in a heterogeneous system. The influence of the calcination temperature of the catalyst and the reaction variables such as the temperature, catalyst amount, methanol/canola oil molar ratio, and time in biodiesel production were investigated. The maximum activity was obtained with the catalyst calcined at 850 °C. When the reaction was carried out at reflux of methanol, with a 6:1 molar ratio of methanol to canola oil and a catalyst amount of 3 wt.% the highest FAME yield of 91.78% was obtained after 3 h of reaction time.  相似文献   

14.
Jatropha curcas L. has recently been hailed as the promising feedstock for biodiesel production as it does not compete with food sources. Conventional production of biodiesel from J. curcas L. seeds involve two main processing steps; extraction of oil and subsequent esterification/transesterification to fatty acid methyl esters (FAME). In this study, the feasibility of in situ extraction, esterification and transesterification of J. curcas L. seeds to biodiesel was investigated. It was found that the size of the seed and reaction period effect the yield of FAME and amount of oil extracted significantly. Using seed with size less than 0.355 mm and n-hexane as co-solvent with the following reaction conditions; reaction temperature of 60 °C, reaction period of 24 h, methanol to seed ratio of 7.5 ml/g and 15 wt% of H2SO4, the oil extraction efficiency and FAME yield can reached 91.2% and 99.8%, respectively. This single step of reactive extraction process therefore can be a potential route for biodiesel production that reduces processing steps and cost.  相似文献   

15.
Transesterification of waste cooking oil with methanol, using tri-potassium phosphate as a solid catalyst, was investigated. Tri-potassium phosphate shows high catalytic properties for the transesterification reaction, compared to CaO and tri-sodium phosphate. Transesterification of waste cooking oil required approximately two times more solid catalyst than transesterification of sunflower oil. The fatty acid methyl ester (FAME) yield reached 97.3% when the transesterification was performed with a catalyst concentration of 4 wt.% at 60 °C for 120 min. After regeneration of the used catalyst with aqueous KOH solution, the FAME yield recovered to 88%. Addition of a co-solvent changed the reaction state from three-phase to two-phase, but reduced the FAME yield, contrary to the results with homogeneous catalysts. The catalyst particles were easily agglomerated by the glycerol drops derived from the homogeneous liquid in the presence of co-solvents, reducing the catalytic activity.  相似文献   

16.
The Mg-Zn interaction effect of KyMg1 − xZn1 + xO3 heterogeneous type catalyst and its performance on transesterification of palm oil have been studied using the response surface methodology and the factorial design of experiments. The catalyst was synthesized using the co-precipitation method and the activity was assessed by transesterification of palm oil into fatty acid methyl esters. The ratio of the Mg/Zn metal interaction, temperature and time of calcination were found to have positive influence on the conversion of palm oil to fatty acid methyl ester (FAME) with the effect of metal to metal ratio and temperature of calcination being more significant. The catalytic activity was found to decrease at higher calcination temperature and the catalyst type K2Mg0.34Zn1.66O3 with Mg/Zn ratio of 4.81 gave FAME content of 73% at a catalyst loading of 1.404 wt.% of oil with molar ratio of methanol to oil being 6:1 at temperature of 150 °C in 6 h. A regression model was obtained to predict conversions to methyl esters as a function of metal interaction ratio, temperature of calcination and time. The observed activity of the synthesized catalyst was due to its synergetic structure and composition.  相似文献   

17.
Biodiesel production through transesterification over natural calciums   总被引:1,自引:0,他引:1  
Transesterification of palm kernel oil (PKO) with methanol over various natural calciums, including limestone calcite, cuttlebone, dolomite, hydroxyapatite, and dicalcium phosphate, has been investigated at 60 °C and 1 atm. The study showed that dolomite, mainly consisting of CaCO3 and MgCO3, is the most active catalyst. The calcination temperature largely affected the physicochemical properties, as evidenced by N2 adsorption-desorption measurement, TGA, SEM and XRD, and the transesterification performance of the resultant catalysts. It was found that the calcination of dolomite at 800 °C resulted in a highly active mixed oxide. CaO was suggested to be the catalytically active site responsible for the methyl ester formation. Under the suitable reaction conditions, the amount of dolomite calcined at 800 °C = 6 wt.% based on the weight of oil, the methanol/oil molar ratio = 30, and the reaction time = 3 h, the methyl ester content of 98.0% can be achieved. The calcined dolomite can be reused many times. The analyses of some important fuel properties indicated that the biodiesel produced had the properties that meet the standard of biodiesel and diesel fuel issued by the Department of Energy Business, Ministry of Energy, Thailand.  相似文献   

18.
The free fatty acids (FFAs) of waste cooking oil (WCO) are readily esterified with crude glycerol in the presence of the solid superacid SO/ZrO2–Al2O3. This reaction lowers the acidity of WCO before biodiesel production. The solid superacid SO/ZrO2–Al2O3 catalyzes both FFA esterification and TAG glycerolysis during the reaction. The conversion of FFA in the WCO with an acid value of 88.4 ± 0.5 mg KOH/g to acylglycerols was 98.4% under optimal conditions (mole ratio of glycerol to FFA = 1.4:1; reaction time = 4 h; reaction temperature = 200°C; catalyst loading = 0.3 wt%) obtained through an orthogonal experiment. The final FAME product with a FAME content of 96.9 ± 0.3 wt% yield was 94.8 wt%, after transesterification of the esterified WCO with methanol, catalyzed by potassium hydroxide. The FAME composition of the products produced by transesterification were identified and quantified by GC–MS. The results suggest that this new glycerol esterification process, using a solid superacid catalyst, affords a promising method to convert oils with high FFA levels, like WCO, to biodiesel. The process has the inherent advantage of easy separation steps for removing excess alcohol and significant savings in energy, when compared to acid catalyzed reactions with methanol to lower acidity. Practical applications : In this work, WCO with a high acid value was esterified with crude glycerol catalyzed by solid super acid, whose formula was expressed as SO/ZrO2–Al2O3. There are distinct advantages to this new esterification process, which include easy separation of the excess crude glycerol by sedimentation or centrifugation, the use of the low cost reactant crude glycerol direct from the byproducts of transesterification, the potential to achieve a very low content of FFAs by post‐refining to improve the yield of the final product, and time and energy saving are found as compared to the traditional methanol esterification process. This new technology provides a promising alternative method for processing feedstocks of high acid value, such as WCO, for the production of biodiesel.  相似文献   

19.
Junhua Zhang  Shangxing Chen  Yuanyuan Yan 《Fuel》2010,89(10):2939-2944
Zanthoxylum bungeanum seed oil (ZSO) with high free fatty acids (FFA) can be used for biodiesel production by ferric sulfate-catalyzed esterification followed by transesterification using calcium oxide (CaO) as an alkaline catalyst. Acid value of ZSO with high FFA can be reduced to less than 2 mg KOH/g by one-step esterification with methanol-to-FFA molar ratio 40.91:1, ferric sulfate 9.75% (based on the weight of FFA), reaction temperature 95 °C and reaction time 2 h, which satisfies transesterification using an alkaline catalyst. The response surface methodology (RSM) was used to optimize the conditions for ZSO biodiesel production using CaO as a catalyst. A quadratic polynomial equation was obtained for biodiesel conversion by multiple regression analysis and verification experiments confirmed the validity of the predicted model. The optimum combination for transesterification was methanol-to-oil molar ratio 11.69:1, catalyst amount 2.52%, and reaction time 2.45 h. At this optimum condition, the conversion to biodiesel reached above 96%. This study provided a practical method to biodiesel production from raw feedstocks with high FFA with high reaction rate, less corrosion, less toxicity, and less environmental problems.  相似文献   

20.
A transesterification reaction of Jatropha curcas oil with methanol in the presence of KOH impregnated CaO catalyst was performed in a simple continuous process. The process variables such as methanol/oil molar ratio (X1), amount of catalyst (X2) and total reaction time (X3) were optimized through response surface methodology, using the Box–Behnken model. Within the range of the selected operating conditions, the optimal ratio of methanol to oil, amount of catalyst and total reaction time were found to be 8.42, 3.17% and 67.9 min, respectively. The results showed that the amount of catalyst and total reaction time have significant effects on the transesterification reaction. For the product to be accepted as a biodiesel fuel, its purity must be above 96.5% of alkyl esters. Based on the optimum condition, the predicted biodiesel conversion was 97.6% while the actual experimental value was 97.1%. The above mentioned results demonstrated that the response surface methodology (RSM) based on Box–Behnken model can well predict the optimum condition for the biodiesel production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号