首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Jyh-Cherng Chen  Jian-Sheng Huang 《Fuel》2007,86(17-18):2824-2832
For mitigating the emission of greenhouse gas CO2 from general air combustion systems, a clean combustion technology O2/RFG is in development. The O2/RFG combustion technology can significantly enhance the CO2 concentration in the flue gas; however, using almost pure oxygen or pure CO2 as feed gas is uneconomic and impractical. As a result, this study proposes a modified O2/RFG combustion technology in which the minimum pure oxygen is mixed with the recycled flue gas and air to serve as the feed gas. The effects of different feed gas compositions and ratios of recycled flue gas on the emission characteristics of CO2, CO and NOx during the plastics incineration are investigated by theoretical and experimental approaches.Theoretical calculations were carried out by a thermodynamic equilibrium program and the results indicated that the emissions of CO2 were increased with the O2 concentrations in the feed gas and the ratios of recycled flue gas increased. Experimental results did not have the same trends with theoretical calculations. The best feed gas composition of the modified O2/RFG combustion was 40% O2 + 60% N2 and the best ratio of recycled flue gas was 15%. As the O2 concentration in feed gas and the ratio of recycled flue gas increased, the total flow rates and pressures of feed gas reduced. The mixing of solid waste and feed gas was incomplete and the formation of CO2 decreased. Moreover, the emission of CO was decreased as the O2 concentration in feed gas and the ratio of recycled flue gas increased. The emission of NOx gradually increased with rising the ratio of recycled flue gas at lower O2 concentration (<40%) but decreased at higher O2 concentration (>60%).  相似文献   

2.
The O2/CO2 coal combustion technology is an innovative combustion technology that can control CO2, SO2 and NOx emissions simultaneously. Calcination and sintering characteristics of limestone under O2/CO2 atmosphere were investigated in this paper. The pore size, the specific pore volume and the specific surface area of CaO calcined were measured by N2 adsorption method. The grain size of CaO calcined was determined by XRD analysis. The specific pore volume and the specific surface area of CaO calcined in O2/CO2 atmosphere are less than that of CaO calcined in air at the same temperature. And the pore diameter of CaO calcined in O2/CO2 atmosphere is larger than that in air. The specific pore volume and the specific surface area of CaO calcined in O2/CO2 atmosphere increase initially with temperature, and then decline as temperature exceeds 1000 °C. The peaks of the specific pore volume and the specific surface area appear at 1000 °C. The specific surface area decreases with increase in the grain size of CaO calcined. The correlations of the grain size with the specific surface area and the specific pore volume can be expressed as L = 744.67 + 464.64 lg(1 / S) and L = − 608.5 + 1342.42 lg(1 / ε), respectively. Sintering has influence on the pore structure of CaO calcined by means of influencing the grain size of CaO.  相似文献   

3.
Pulverized coal combustion in O2/N2 and O2/CO2 environments was investigated with a drop tube furnace. Results present that the reaction rate and burn-out degree of O2/CO2 chars (obtained in O2/CO2 environments) are lower than that of O2/N2 chars (obtained in O2/N2 environments) under the same experimental condition. It indicates that a higher O2 concentration in O2/CO2 environment is needed to achieve the similar combustion characteristic to that in O2/N2 environment. The main differences between O2/N2 and O2/CO2 chars rely on the pore structure determined by N2 adsorption and chemical structure measured by FT-IR. For O2/CO2 char, the surface is thick and the pores are compact which contribute to the fragmentation reduction of particles burning in O2/CO2 environment. The organic functional group elimination rate from the surface of O2/CO2 chars is slower or delayed. The present research results might have important implications for further understanding the intrinsic kinetics of pulverized coal combustion in O2/CO2 environment.  相似文献   

4.
5.
The interaction of NO and O2 with 5 mol.% of vanadia deposited on Ce0.10Zr0.90O2 and Ce0.69Zr0.31O2 supports by wet impregnation was studied by means of EPR and IR. The supports were structurally characterized by XRD and Raman spectroscopy. Influence of the phase composition of the support on vanadium speciation as well as on surface architecture of the oxovanadium entities was discussed. The NO forms adsorbed on vanadium-containing systems were compared to those observed on bare CeO2-ZrO2 supports. The main products appearing on the catalysts surface during the consecutive reaction with NO and O2 were identified and their thermal evolution was observed. Changes in vanadium speciation accompanying redox processes related to NO and O2 activation were also observed and discussed.  相似文献   

6.
Hao Liu  Ramlan Zailani 《Fuel》2005,84(16):2109-2115
This paper presents experimental results of a 20 kW vertical combustor equipped with a single pf-burner on pulverised coal combustion in air and O2/CO2 mixtures with NOx recycle. Experimental results on combustion performance and NOx emissions of seven international bituminous coals in air and in O2/CO2 mixtures confirm the previous findings of the authors that the O2 concentration in the O2/CO2 mixture has to be 30% or higher to produce matching temperature profiles to those of coal-air combustion while coal combustion in 30% O2/70% CO2 leads to better coal burnout and less NOx emissions than coal combustion in air. Experimental results with NOx recycle reveal that the reduction of the recycled NO depends on the combustion media, combustion mode (staging or non-staging) and recycling location. Generally, more NO is reduced with coal combustion in 30% O2/70% CO2 than with coal combustion in air. Up to 88 and 92% reductions of the recycled NO can be achieved with coal combustion in air and in 30% O2/70% CO2 respectively. More NO is reduced with oxidant staging than without oxidant staging when NO is recycled through the burner. Much more NO is reduced when NO recycled through the burner (from 65 to 92%) than when NO is recycled through the staging tertiary oxidant ports (from 33 to 54%). The concentration of the recycled NO has little influence on the reduction efficiency of the recycled NO with both combustion media—air and 30% O2/70% CO2.  相似文献   

7.
Changdong Sheng  Yi Li 《Fuel》2008,87(7):1297-1305
The present paper was addressed to mineral transformations and ash formation during O2/CO2 combustion of pulverized coal. Four Chinese thermal coals were burned in a drop tube furnace to generate ashes under various combustion conditions. The ash samples were characterized with XRD analysis and 57Fe Mössbauer spectroscopy. The impacts of O2/CO2 combustion on mineral transformation and ash formation were explored through comparisons between O2/CO2 combustion and O2/N2 combustion. It was found that, O2/CO2 combustion did not significantly change the mineral phases formed in the residue ashes, but did affect the relative amounts of the mineral phases. The differences observed in the ashes formed in two atmospheres were attributed to the impact of the gas atmosphere on the combustion temperatures of coal char particles, which consequently influenced the ash formation behaviors of included minerals.  相似文献   

8.
T. Uma 《Electrochimica acta》2007,52(24):6895-6900
The scope of the present work was to investigate and evaluate the electrochemical activity of H2/O2 fuel cells based on the influence of a heteropolyacid glass membrane with a Pt/C electrode at low temperature. A new trend of sol-gel derived PMA (H3PMo12O40) heteropolyacid-containing glass membranes inherent of a high proton conductivity and mechanical stability, was heat treated at 600 °C and implemented to H2/O2 fuel cell activities through electrochemical characterization. Significant research has been focused on the development of H2/O2 fuel cells using optimization of heteropolyacid glasses as electrolytes with Pt/C electrodes at 30 °C. A maximum power density of 23.9 mW/cm2 was attained for operation with hydrogen and oxygen, respectively, at 30 °C and 30% humidity with the PMA glass membranes (4-92-4 mol%). Impedance spectroscopy measurements were performed on a total ohmic cell resistance of a membrane-electrode-assembly (MEA) at the end of the experiment.  相似文献   

9.
Hao Liu 《Fuel》2003,82(11):1427-1436
Coal combustion with O2/CO2 is promising because of its easy CO2 recovery, extremely low NOx emission and high desulfurization efficiency. Based on our own fundamental experimental data combined with a sophisticated data analysis, its characteristics were investigated. It was revealed that the conversion ratio from fuel-N to exhausted NO in O2/CO2 pulverized coal combustion was only about one fourth of conventional pulverized coal combustion. To decrease exhausted NO further and realize simultaneous easy CO2 recovery and drastic reduction of SOx and NOx, a new scheme, i.e. O2/CO2 coal combustion with heat recirculation, was proposed. It was clarified that in O2/CO2 coal combustion, with about 40% of heat recirculation, the same coal combustion intensity as that of coal combustion in air could be realized even at an O2 concentration of as low as 15%. Thus exhausted NO could be decreased further into only one seventh of conventional coal combustion. Simultaneous easy CO2 recovery and drastic reduction of SOx and NOx could be realized with this new scheme.  相似文献   

10.
S?awomir Ku? 《Fuel》2003,82(11):1331-1338
The catalytic performance in oxidative coupling of methane (OCM) of unmodified pure La2O3, Nd2O3, ZrO2 and Nb2O5 has been investigated under various conditions. The results confirmed that the activity of La2O3 and Nd2O3 was always much higher than that of the remaining two. The surface basicity/base strength distribution of pure La2O3, Nd2O3, ZrO2 and Nb2O5 was measured using a test reaction of transformation of 2-butanol and a temperature-programmed desorption of CO2. Both methods showed that La2O3 and Nd2O3 had high basicity and contained medium and strong basic sites (lanthanum oxide more and neodymium oxide somewhat less). ZrO2 had only negligible amount of weak basic sites and Nb2O5 was rather acidic. The confrontation of the basicity and catalytic performance indicated that in the case of investigated oxides, the basicity (especially strong basic sites) could be a decisive factor in determination of the catalytic activity in OCM. Only in the case of ZrO2 it was observed a moderate catalytic performance in spite of negligible basicity. The influence of a gas atmosphere used in the calcination of oxides (flowing oxygen, helium and nitrogen) on their basicity and catalytic activity in OCM had been also investigated. Contrary to earlier observations with MgO, no effect of calcination atmosphere on the catalytic performance of investigated oxides in OCM and on their basicity was observed.  相似文献   

11.
A SrCo0.8Fe0.2O3 impregnated TiO2 membrane (TiO2-SrCo0.8Fe0.2O3 membrane) was successfully prepared using a sol-gel method in combination with a wet impregnation process. The membrane was subjected to a single gas permeance test using oxygen (O2) and nitrogen (N2). The TiO2 membrane was immersed in the SrCo0.8Fe0.2O3 solution, dried and then calcined to affix SrCo0.8Fe0.2O3 into the membrane. The effect of the acid/alkoxide (H+/Ti4+) molar ratio of the TiO2 sol on the TiO2 phase transformation was investigated. The optimal molar ratio was found to be 0.5, which resulted in nanoparticles with a mean size of 5.30 nm after calcination at 400 °C. The effect of calcination temperature on the phase transformation of TiO2 and SrCo0.8Fe0.2O3 was investigated by varying the calcination temperature from 300 to 500 °C. X-ray diffraction spectroscopy (XRD) and Fourier transform infrared (FTIR) analysis confirmed that a calcination temperature of 400 °C was preferable for preparing a TiO2-SrCo0.8Fe0.2O3 membrane with fully crystallized anatase and SrCo0.8Fe0.2O3 phases. The results also showed that polyvinyl alcohol (PVA) and hydroxypropyl cellulose (HPC) were completely removed. Field emission scanning electron microscopy (FESEM) analysis results showed that a crack-free and relatively dense TiO2 membrane (∼0.75 μm thickness) was created with a multiple dip-coating process and calcination at 400 °C. The gas permeation results show that the TiO2 and TiO2-SrCo0.8Fe0.2O3 membranes exhibited high permeances. The TiO2-SrCo0.8Fe0.2O3 membrane developed provided greater O2/N2 selectivity compared to the TiO2 membrane alone.  相似文献   

12.
The effects of V2O5, NiO, Fe2O3 and vanadium slag on the corrosion of Al2O3 and MgAl2O4 have been investigated. The specimens of Al2O3 and MgAl2O4 with the respective oxides above mentioned were heated at 10 °C/min from room temperature up to three different temperatures: 1400, 1450 and 1500 °C. The corrosion mechanisms of each system were followed by XRD and SEM analyses. The results obtained showed that Al2O3 was less affected by the studied oxides than MgAl2O4. Alumina was only attacked by NiO forming NiAl2O4 spinel, while the MgAl2O4 spinel was attacked by V2O5 forming MgV2O6. It was also observed that Fe2O3 and Mg, Ni, V and Fe present in the vanadium slag diffused into Al2O3. On the other hand, the Fe2O3 and Ca, S, Si, Na, Mg, V and Fe diffused into the MgAl2O4 structure. Finally, the results obtained were compared with those predicted by the FactSage software.  相似文献   

13.
Hua Fei  Jun Xiang  Lushi Sun  Peng Fu  Gang Chen 《Fuel》2011,90(2):441-448
When predicting the variation of pore structure during O2/CO2 combustion of coal chars using the random pore model (RPM), it is impossible to calculate exactly the structure parameter ψ from the pore characteristics. The values of structure parameter ψ, which were calculated based on its fractal feature at various carbon conversions, should be almost constant. However, this investigation exhibited a drastic increase of ψ at the end of combustion reaction. In this work, structure parameter ψ of the RPM was modified according to the experimental analysis and a new model, fractal random pore model (FRPM), was constructed. Compared with other models such as RPM, discrete random pore model (DRPM), the Struis model (Model I) and the Liu model (Model II), it was found that fractal random pore model was more accurate to describe coal chars combustion, especially at higher conversions. Using the FRPM, O2/CO2 isotherm combustion of coal chars were analyzed at different temperatures.  相似文献   

14.
Mesoporous and nanosized cobalt aluminate spinel with high specific surface area was prepared using microwave assisted glycothermal method and used as soot combustion catalyst in a NOx + O2 stream. For comparison, zinc aluminate spinel and alumina supported platinum catalysts were prepared and tested. All samples were characterised using XRD, (HR)TEM, N2 adsorption–desorption measurements. The CoAl2O4 spinel was able to oxidise soot as fast as the reference Pt/Al2O3 catalyst. Its catalytic activity can be attributed to a high NOx chemisorption on the surface of this spinel, which leads to the fast oxidation of NO to NO2.  相似文献   

15.
In this work, we report high growth rate of nanocrystalline diamond (NCD) films on silicon wafers of 2 inches in diameter using a new growth regime, which employs high power and CH4/H2/N2/O2 plasma using a 5 kW MPCVD system. This is distinct from the commonly used hydrogen-poor Ar/CH4 chemistries for NCD growth. Upon rising microwave power from 2000 W to 3200 W, the growth rate of the NCD films increases from 0.3 to 3.4 μm/h, namely one order of magnitude enhancement on the growth rate was achieved at high microwave power. The morphology, grain size, microstructure, orientation or texture, and crystalline quality of the NCD samples were characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray diffraction, and micro-Raman spectroscopy. The combined effect of nitrogen addition, microwave power, and temperature on NCD growth is discussed from the point view of gas phase chemistry and surface reactions.  相似文献   

16.
RuO2-based electrodes are generally known to be unstable for O2 evolution. In this paper, a stable type of RuO2-based electrode, Ti/RuO2-Sb2O5-SnO2, is demonstrated for O2 evolution. In the ternary oxide coating, RuO2 serves as the catalyst, SnO2 as the dispersing agent, and Sb2O5 as the dopant. The accelerated life test showed that the Ti/RuO2-Sb2O5-SnO2 electrode containing 12.2 molar percent of RuO2 nominally in the coating had a service life of 307 h in 3 M H2SO4 solution under a current density of 0.5 A cm−2 at 25 °C, which is more than 15 times longer than other types of RuO2-based electrodes. Instrumental analysis indicated that RuO2-Sb2O5-SnO2 was a solid solution with a compact structure, which contributed to the stable nature of the electrode.  相似文献   

17.
Supporting V2O5 onto an activated coke (AC) has been reported to significantly increase the AC's activity in simultaneous SO2 and NO removal from flue gas. To understand the role of V2O5 on SO2 removal, V2O5/AC is studied through SO2 removal reaction, surface analysis, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FTIR) techniques. It is found that the main role of V2O5 in SO2 removal over V2O5/AC is to catalyze SO2 oxidation through a VOSO4-like intermediate species, which reacts with O2 to form SO3 and V2O5. The SO3 formed transfers from the V sites to AC sites and then reacts with H2O to form H2SO4. At low V2O5 loadings, a V atom is able to catalyze as many as 8 SO2 molecules to SO3. At high V2O5 loadings, however, the number of SO2 molecules catalyzed by a V atom is much less, due possibly to excessive amounts of V2O5 sites in comparison to the pores available for SO3 and H2SO4 storage.  相似文献   

18.
The stability of one material, Ti/CuxCo3−xO4, as anode and also cathode was investigated for electrolysis of alkaline aqueous solution. The electrodes were prepared by thermal decomposition method with x varied from 0 to 1.5. The accelerated life test illustrated that the electrodes with x = 0.3 nominally showed the best performance, with a total service life of 1080 h recorded in 1 M NaOH solution under alternating current direction at 1 A cm−2 and 35 °C. The effects of copper content in electrode coating were examined in terms of electrode stability, surface morphology, coating resistivity and coating compositions. The presence of Cu in the spinel structure of Co3O4 could significantly enhance the electrochemical and physicochemical properties. The trends of crystallographic properties and surface morphology have been analyzed systemically before, during and after the electrodes were employed in alkaline electrolysis. The oxygen evolution would lead to the consumption of the coating material and the progressive cracking of the coating. Along with hydrogen evolution, cobalt oxide could be reduced to metal Co and Co(OH)2 with particle sizes changed to smaller values in crystal and/or amorphous form at the cathode. The formation of Co is the key process for this electrode to serve as both anode and cathode. It is also the main reason leading to the eventual failure of the electrodes.  相似文献   

19.
K.M. Shaju 《Electrochimica acta》2003,48(11):1505-1514
Layered Li(Ni1/2Mn1/2)O2 was prepared by the solution and mixed hydroxide methods, characterised by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) and studied by cyclic voltammetry (CV) and charge discharge cycling in CC and CCCV modes at room temperature (r.t.) and at 50 °C. The XPS studies show about 8% of Ni3+ and Mn3+ ions are present in Li(Ni2+1/2Mn1/24+)O2 due to valency-degeneracy. The compound prepared at 950 °C, 12 h, solution method gives a second cycle discharge capacity of 150 mA h g−1 (2.5-4.4 V) at a specific current of 30 mA g−1 and retains 137 mA h g−1 at the end of 40 cycles. CV shows that the redox process at 3.7-4.0 V corresponds to Ni2+↔Ni4+ and clear indication of Mn3+/4+ couple was noted at 4.2-4.5 V. The observed capacity-fading (2.5-4.4 V) is shown to be contributed by the polarisation at the end of charging. The cathodic capacity is stable up to 40 cycles in the voltage window, 2.5-4.2 V both at room temperature and 50 °C.  相似文献   

20.
Z.H. Wang  A. Ehn  Z.S. Li  J. Bood  K.F. Cen 《Fuel》2010,89(9):2346-130
Direct ozone (O3) injection is a promising flue-gas treatment technology based on oxidation of NO and Hg into soluble species like NO2, NO3, N2O5, oxidized mercury, etc. These product gases are then effectively removed from the flue gases with the wet flue gas desulfurization system for SO2. The kinetics and mixing behaviors of the oxidation process are important phenomena in development of practical applications. In this work, planar laser-induced fluorescence (PLIF) of NO and NO2 was utilized to investigate the reaction structures between a turbulent O3 jet (dry air with 2000 ppm O3) and a laminar co-flow of simulated flue gas (containing 200 ppm NO), prepared in co-axial tubes. The shape of the reaction zone and the NO conversion rate along with the downstream length were determined from the NO-PLIF measurements. About 62% of NO was oxidized at 15d (d, jet orifice diameter) by a 30 m/s O3 jet with an influence width of about 6d in radius. The NO2 PLIF results support the conclusions deduced from the NO-PLIF measurements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号