首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The objective of this research was to enhance adsorption capacity of Acacia nilotica (keekar) sawdust for the abatement of chromium bearing wastewater and to investigate the effect of process parameters on adsorption capacity. The sawdust was activated by acid wash and functionalized subsequently with formaldehyde. Functionalization of activated sawdust raised its chromium removal efficiency of almost 10% as compared to its adsorption removal efficiency of HCl treated sawdust in a batch adsorption study. Adsorption kinetic data provided better fitting with pseudo second order model. Maximum adsorption capacity calculated through the best fitting Langmuir model was 6.34 mg·g-1 and 8.2 mg·g-1 for HCl treated and formaldehyde functionalized sawdust adsorbents, respectively. The adsorption of Cr(VI) was endothermic when studied by varying temperature from 20℃ to 50℃ for both activated and functionalized adsorbents.  相似文献   

2.
Abstract

This work aims to evaluate the Cr(VI) removal efficiency and adsorption capacity of the raw coconut fiber from synthetic aqueous solutions through the operational parameters as well as to represent the mechanisms of removal by kinetic and isotherm models. The experimental study was conducted in batch system and the optimum conditions for the adsorption of this metal by the biomass were according to: pH 2, contact time of 270?min, and 10?g/L of adsorbent dosage concentration. The removal efficiency obtained for Cr(VI) solutions was 99.2% at concentrations of 25–50?mg/L. For the highest concentrations, the removal decreased from 96.3% to 74.4%, when Cr(VI) solutions ranged from 100?mg/L to 250?mg/L, respectively. The adsorption kinetics was applied and showed a good agreement for pseudo-second-order and Elovich models, which point out a chemisorption. For the adsorption capacity at equilibrium conditions, the best fit was for the Redlich–Peterson isotherm indicating favorable adsorption and monolayer coverage.  相似文献   

3.
This study was carried out to develop a carbamide-based dithiocarbamate (CDTC) chelator for the removal of heavy metal ions from wastewater. Its structural properties were characterized by FT-IR, 1H NMR and 13C NMR. Results confirmed the functional groups of HNC(S)S existed. The adsorption isotherms showed CDTC had a high adsorption capability for Zn (119.8 mg/g) and Cu (63.1 mg/g). It exhibited a distinctive selectivity for the removal of metal ions (Cu2+ > Zn2+ > Cr3+ > Pb2+ > Cd2+) as they coexisted. The influence of initial pH of wastewater for the removal efficiency of metal ions was also investigated and a pH > 7 was preferred.  相似文献   

4.
Poly(N-methylaniline) (PNMA) composite composed of N-methylaniline and poly(ethanol) was prepared by in situ polymerization technique and characterized using FTIR, SEM-EDS and XRD instruments. Characterization of product revealed that this composite is crystalline in nature and the particles size is less than100 nm. The potential of this composite in removal of Cr(VI) ions from synthetic aqueous effluents was investigated by batch sorption system. The experimental results confirmed that this adsorbent has the potential application for removal of Cr(VI) ions from aqueous solution with the sorption capacity of 125 mg/g of Cr(VI)/0.1 g of adsorbent.  相似文献   

5.
Summary Poly(N-hydroxymethylacrylamide), PHMA, hydrogels were prepared by using N-hydroxymethylacrylamide, HMA, monomer and polyethyleneglycol(400)diacrylate as a crosslinking agent in aqueous medium and then amine groups were incorporated onto PHMA hydrogels by amination reaction with different diamines. The obtained hydrogels were characterized by determination of amine value, hydroxymethyl group content and FTIR spectra. The amine value of hydrogels changed from 2.23 to 4.64 mmol/g by depending on the amine compounds used in amination reaction. Their swelling degree increased at acidic pH values and they showed pH dependent swelling behaviour. They were used as sorbent for removal of indigo carmine and Cu(II) ion, as a model dye molecule and metal ion, respectively, from aqueous solutions. The adsorption properties of the hydrogels were investigated by depending on pH, time and initial indigo carmine or Cu(II) ion concentration. It was seen that the amine group incorporated hydrogels have quite high adsorption rate and adsorption capacity, and their adsorption capacities changed with pH of the solution. Langmuir isotherm model was the best fit for adsorption of both indigo carmine and Cu (II) ion.  相似文献   

6.
Adsorption of Cd(II), Co(II), and Ni(II) on aminopyridine modified poly(styrene‐alt‐maleic anhydride) crosslinked by 1,2‐diaminoethane as an ion exchange resin has been investigated in aqueous solution. Adsorption behavior of these metal ions on the resin was studied by varying the parameters such as pH (2–6), adsorbent dose (0–4.0 g/L), contact time (0–240 min), and metal ions concentration (20–300 mg/L). Adsorption percentage was increased by increasing each of these parameters. The isotherm models such as: Langmuir, Freundlich, Temkin, and Dubinin–Radushkevich were used to describe adsorption equilibrium. The results showed that the best fit was achieved with the Langmuir isotherm equation, yielding maximum adsorption capacities of 81.30, 49.02, and 76.92 mg/g for Cd(II), Co(II), and Ni(II), respectively. The pseudo‐first‐order, pseudo‐second‐order, and intra‐particle diffusion kinetics equations were used for modeling of adsorption data and it was shown that pseudo‐second‐order kinetic equation could best describe the adsorption kinetics. The intra‐particle diffusion study revealed that external diffusion might be involved in this case. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41642.  相似文献   

7.
ABSTRACT

This study presents the application of fly ash from brown coal and biomass burning power plant as a sorbent for the removal of boron ions from an aqueous solution. The adsorption process efficiency depended on the parameters, such as adsorbent dosage, pH, temperature, agitation time and initial boron concentration. The experimental data fitted well with the Freundlich isotherm model and the maximum capacity was found to be 16.14 mg g?1. The adsorption kinetics followed the pseudo-second-order model. Also, the intra-particle diffusion model parameters were calculated. Thermodynamic parameters such as change in free energy (ΔG°), enthalpy (ΔH°), entropy (ΔS°) revealed on exothermic nature of boron adsorption onto the fly ash.  相似文献   

8.
In this work, mesoporous geopolymer was synthesized using a novel and easy synthesis route employing metakaolin and rice husk ash as sources of silica and alumina, and soybean oil as a mesostructure-directing agent. For comparison purposes, a geopolymer sample was produced without the use of oil. The samples were characterized by Fourier transform infrared spectroscopy (FT–IR), X–ray diffraction (XRD), specific surface area, pore volume, average pore size, and pore size distribution (BET and BJH methods). The materials were tested to remove methyl violet 10B dye from aqueous solutions. The results showed that the mesoporous geopolymer presented adsorptive superior behavior compared to the geopolymer prepared without the use of oil, being attributed to its superior pore properties. The adsorption equilibrium was attained within 120 min, and the maximum adsorption capacity of mesoporous geopolymer was 276.9 mg g–1. Therefore, the mesoporous geopolymer prepared in this work comprises a potential adsorbent, presenting pore intrinsic properties that result in a high adsorption capacity.  相似文献   

9.
Fly ash samples from the Bayswater and Eraring power plants, located in New South Wales, Australia, were used in a preliminary study on zeolite synthesis by hydrothermal treatment with sodium hydroxide under various conditions. The treated fly ash was tested for the ability to remove lead ions from aqueous solution. Both fly ashes were partially converted to zeolite. The zeolites formed under the experimental conditions were zeolite Na‐P1 and sodalite octahydrate for the Bayswater ash and phillipsite, zeolite X, zeolite Na‐P1 and sodalite octahydrate for the Eraring ash. The type of zeolite formed was dependent on the treatment time and sodium hydroxide concentration. In the case of the Bayswater ash, zeolite Na‐P1 was formed by treatment with 4 mol dm?3 NaOH for 48 h while treatment with 5 mol dm?3 NaOH for 96 h produced sodalite octahydrate at the expense of zeolite Na‐P1. In the case of the Eraring ash, phillipsite was formed following treatment with 3 mol dm?3 NaOH, zeolite X and zeolite Na‐P1 were formed following treatment with 4 mol dm?3 NaOH and sodalite octahydrate was formed following treatment with 5 mol dm?3 NaOH. A maximum cation exchange capacity of ~400 meq/100 g was achieved by both treated ash samples. Treatment of a solution with a lead ion concentration of 120 ppm using 0.5 g of both treated ash samples (S/L ratio = 0.25 g/100 cm3) achieved complete removal in 5 min, whereas treatment with 0.1 g of each material (S/L ratio = 0.05 g/100 cm3) achieved complete lead ion removal after 24 h. © 2001 Society of Chemical Industry  相似文献   

10.
New polymeric structures obtained by chemical transformations of maleic anhydride/dicyclopentadiene copolymer with triethylenetetraamine, p‐aminobenzoic acid, and p‐aminophenylacetic acid were used for the removal Cu(II) ions from aqueous solutions. The experimental values prove the importance of the chelator nature and of the macromolecular chain geometry for the retention efficiency. The retention efficiency (ηr), the retention capacity (Q e ), and the distribution coefficient of the metal ion into the polymer matrix (K d ) are realized by evaluation of residual Cu(II) ions in the effluent waters, by atomic adsorption. Also are discussed the influence of pH, the thermal stability of the polymer, and their polymer–metal complex, as well as the particular aspects regarding the contact procedure and the batch time. Based on the polymers and polymer–metal complexes characterization a potential retention mechanism is proposed. All polymer supports as well theirs metal–complexes are characterized by ATD and FTIR measurements. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 1397–1405, 2007  相似文献   

11.
In the present study, a low-cost adsorbent is developed from the naturally and abundantly available sawdust which is biodegradable. The removal capacity of Cr(VI) from aqueous solutions and from the synthetically prepared industrial effluent of electroplating and tannery industries is obtained. The batch experiments are carried out to investigate the effect of the significant process parameters such as initial pH, change in pH during adsorption, contact time, adsorbent amount, and the initial Cr(VI) concentration. The maximum adsorption of Cr(VI) on sawdust is obtained at an initial pH value of 1. The value of pH increases with increase in contact time and initial Cr(VI) concentration. The equilibrium data for the adsorption of Cr(VI) on sawdust is tested with various adsorption isotherm models such as Langmuir, Freundlich, Redlich–Peterson, Koble–Corrigan, Tempkin, Dubinin–Radushkevich and Generalized equation. The Langmuir isotherm model is found to be the most suitable one for the Cr(VI) adsorption using sawdust and the maximum adsorption capacity obtained is 41.5 mg g−1 at a pH value of 1. The adsorption process follows the second-order kinetics and the corresponding rate constants are obtained. Desorption of Cr(VI) from sawdust using acid and base treatment exhibited a higher desorption efficiency by more than 95%. A feasible solution is proposed, for the disposal of the contaminant (acid and base solutions) containing high concentration of Cr(VI) obtained during the desorption process. The interference of other ions which are generally present in the electroplating and tannery industrial effluent streams on the Cr(VI) removal is investigated.  相似文献   

12.
Sulfonated multi-walled carbon nanotubes (s-MWCNTs) was prepared from purified multi-walled carbon nanotubes (p-MWCNTs) by concentrated H2SO4 at elevated temperature. The structure was characterized by SEM, FTIR, Raman, XPS, and BET. It could be dispersed steadily in water at a dosage of 1.0 mg/mL for a week. The adsorption performance of s-MWCNTs toward Cu(II) was investigated including the effects of pH and ionic strength. Results indicated the adsorption was much dependent on pH but not on ionic strength. The adsorption capacity for Cu(II) was enhanced 58.9% via the sulfonation. Moreover, the adsorption mechanisms were carefully analyzed by Freundlich and D-R models.  相似文献   

13.
In this paper, a one-pot and easy-to-handle method at room temperature without additional chemicals for the modification of graphene oxide (GO) with surfactant is found. Removal of nickel (II) ions from aqueous solutions by GO and surfactant (sodium dodecyl sulphate) modified graphene oxide (SDS-GO) was studied spectrophotometrically at room temperature as a function of time, initial concentration and pH. Adsorption capacity of the adsorbent was increased dramatically (from 20.19 to 55.16 mg/g found by Langmuir model) due to the functionalization of the surface by SDS. The driving force of the adsorption of Ni(II) ions is electrostatic attraction and Ni(II) ions adsorbed on the GO surface chemically besides ion exchange.  相似文献   

14.
Phosphate ions have been removed from aqueous solution by fly ash, slag, ordinary Portland cement (OPC) and related cement blends. The rate and efficiency of PO43− removal were found to increase in the order: fly ash, slag, OPC, apparently mimicking the order of increasing percent CaO in the adsorbents. Blending OPC with fly ash or slag evidently results in diminished PO43− removal efficiency. Better removal was obtained at higher solute concentration, acidic pH and higher temperature. The effect of particle size and the speed of mixing were found not to be significant. A first-order kinetic model was used to obtain values for overall sorption rate constants and intraparticle diffusion constants. The Frumkin isotherm was found to be the appropriate equation for modelling isotherms from the experimental adsorption data, and values have been obtained for the isotherm constants. A 400-mg/l PO43− (as P) solution was fed at a steady velocity of 2.0 cm/min through a 2.0-cm fixed-bed column (at pH 9.0 and 25 °C), and breakthrough curves were constructed to obtain estimated adsorption capacity values of 32, 60, 75, 78 and 83 mg PO43−/g adsorbent for fly ash, slag, OPC+fly ash, OPC+slag and OPC, respectively.  相似文献   

15.
M. Uçurum 《Fuel》2009,88(8):1460-749
The present study determines the efficiency with which lignite and lignite washing plant tailings can adsorb Pb heavy metal ions. In the first experiment, the effect of size distribution on the absorbance capacity was investigated for the samples. Therefore, lignite sample was ground to five sizes (d80 = 0.600, 0.355, 0.250, 0.106 and 0.063 mm) under nitrogen (N2), and the tailings sample was classified into seven fractions, along with the original state (original state: d60 = 0.063, −1 + 0.600, −0.600 + 0.355, −0.355 + 0.250, −0.250 + 0.106, −0.106 + 0.063 and −0.063 mm). The test results showed that the optimum size distributions for lignite and tailings were d80 = 0.063 mm and the original state (d60 = 0.063 mm), respectively. Simultaneously, the adsorption capacity results of the two optimum sizes were compared with each other, and the tailings sample (d60 = 0.063 mm) gave the best results, with 9.30 mg/g Pb ions adsorbed value. Therefore, in the second study, a series of laboratory experiments using 23 full factorial designs was conducted to determine the optimum pH, contact time and initial metal concentration using the original tailings sample. The experimental studies showed that pH 9, a 120 min contact time and 300 ppm initial metal concentration gave the best results, namely an adsorption of 29.92 mg Pb ions/g.  相似文献   

16.
In this research, the natural bentonite clay collected from Ashapura Clay Mines, Gujarat State, India, was utilized as a precursor to produce aluminium-pillared bentonite clay (Al-PILC) for the removal of cobalt(II) [Co(II)] ions from aqueous solutions. The original bentonite clay and Al-PILC were characterized with the help of chemical analyses, methylene blue (MB) adsorption isotherm, powder X-ray diffraction (XRD), scanning electron microscopy (SEM) and infrared spectroscopy (IR), while the thermal stability of the samples were studied using thermogravimetry (TG). Surface charge density of the samples as a function of pH was investigated using potentiometric titrations. Adsorption experiments were conducted under various conditions, i.e., pH, contact time, initial concentration, ionic strength, adsorbent dose and temperature. The most effective pH range for the removal of Co(II) ions was found to be 6.0–8.0. The maximum adsorption of 99.8% and 87.0% took place at pH 6.0 from an initial concentration of 10.0 and 25.0 mg l−1, respectively. Kinetic studies showed that an equilibrium time of 24 h was needed for the adsorption of Co(II) ions on Al-PILC and the experimental data were correlated by either the external mass transfer diffusion model for the first stage of adsorption and the intraparticle mass transfer diffusion model for the second stage of adsorption. The intraparticle mass transfer diffusion model gave a better fit to the experimental data. The Arrhenius and Eyring equations were applied to the data to determine the kinetic and thermodynamic parameters for explaining the theoretical behaviour of the adsorption process. The equilibrium isotherm data were analyzed using the Langmuir, Freundlich and Scatchard isotherm equations and the adsorption process was reflected by Freundlich isotherm. The efficiency of the Al-PILC was assessed by comparing the results with those on a commercial ion exchanger, Ceralite IRC-50. The suitability of the Al-PILC for treating Co(II) solutions was tested using simulated nuclear power plant coolant samples. Acid regeneration was tried for several cycles with a view to recover the adsorbed Co(II) and also to restore the adsorbent to its original state.  相似文献   

17.
ABSTRACT

A novel adsorbent was synthesized through functionalization of glycidyl methacrylate-g-poly(ethylene terephthalate) (GMA-g-PET) fibers with iminodiacetic acid (IDA) to give IDA-GMA-g-PET fibers. This adsorbent was then exploited for the removal of Malachite Green (MG) and Rhodamine B (RB) dyes. MG has shown faster adsorption kinetics and equilibrium was attained in 15 mins. and 90 mins. for MG and RB, respectively. IDA-GMA-g-PET fibers showed 100% removal efficiency for MG and RB dyes from the solutions having initial concentrations of 300 mg L?1and 200 mg L?1, respectively. Desorption conditions of dyes and reusability of the fibers were also investigated.  相似文献   

18.
X-modified magnetite (XFe2O4; X?=?Cr, Mn, Fe, Co or Ni) was synthesized from goethite reduction, and inserted into the Fe-vacancy of perovskite (BiFeO3), via microbial Fe3+→Fe2+ reduction by Shewanella (e.g. Shewanella oneidensis MR-1 and Shewanella putrefaciens CN32). We demonstrated that the average adsorption intensities of nine toxic trace metals (Cr3+, Mn2+, Co2+, Ni2+, Cu2+, Zn2+, Cd2+, Pb2+, and Hg2+), in Freundlich mode were 8.29–10.79 multiples higher than that in Langmuir mode, being more competitive than previously reported values. The fluorescence quenching is attributed to the orbital hybridization of molecular oxygen activation and trace metal (M) ions, which weakens the X2+-O-Fe3+-O-(Fe3+) coupling orbital. In addition Shewanella putrefaciens CN32 creates more oxygen vacancies to modify Ni↓-Fe↓-O↑ d*-p hybridized orbitals for enhancing the local spin-orbit coupling with Cd-4d10. This design idea can be extended to other direct biosynthetic magnetite-perovskite as highly efficient toxic trace metal removal agents.  相似文献   

19.
The sorption and transport of metal ions by poly(vinyl alcohol) hydrogel membranes (PVA HG), obtained by physical crosslinking through the freezing/thawing method, was analyzed using aqueous nitrate solutions of copper, lead, and nickel, at concentrations ranging from 1 to 100 mM, at 25°C. The sorption of heavy metal by PVA HG has been characterized by swelling and loading degrees. The effect of the heavy metals incorporation on the chemical properties of PVA HG matrices has been studied using SEM, to observe changes in the surface morphology of PVA HG membranes, and FTIR–ATR, aiming to monitor the heavy metals ions sorption into PVA hydrogel membranes. The analysis of permeation and diffusion coefficients of 100 mM aqueous solutions of Cu2+, Ni2+, and Pb2+ show that the diffusion process may be mainly described by hydrodynamic models; however, the transport process shows that the distribution coefficient for the different heavy metals are always higher than one, in agreement, with the sorption studies. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

20.
Hydrogels composed of poly(vinyl alcohol) (PVA) and carboxymethyl chitosan (CMCh) were synthesized via ultraviolet (UV) irradiation that can be used in several industrial fields. Several analysis tools were used to characterize the physical and thermal properties of CMCh/PVA hydrogels namely FT‐IR, scanning electron microscope (SEM), XRD, thermogravimetric analysis (TGA), and differential scanning calorimetery (DSC). TGA results showed that CMCh/PVA hydrogels are thermally more stable than CMCh and their thermal stability increases as PVA content increases in the hydrogel. Also, DSC results showed that CMCh/PVA hydrogels are at least partial miscible blends. Moreover, the swelling behavior of the CMCh/PVA hydrogels was studied in different buffered solutions and in different salt solutions at various concentrations. CMCh/PVA hydrogels swell much more than CMCh especially at alkaline pH. Both metal and dye uptake were studied for CMCh/PVA hydrogels. The hydrogels adsorb much more dyestuff and metal ions like Cu2+, Cd2+, and Co2+ than CMCh itself. Much dyestuff and metal ions are adsorbed by the hydrogels as PVA content increases in the hydrogel. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号