首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A dual-fluidized bed reactor was applied in the pyrolysis of pine wood and catalytic upgrading of the pyrolysis vapors over H-Beta zeolite. The temperatures of the pyrolysis and catalytic upgrading reactors were 400 and 440 °C, respectively. The effect of space velocity on the yield and composition of pyrolysis products was investigated. It was found that the catalytic upgrading affects all pyrolysis products, except the char yield which can be considered constant at all space velocities. By lowering the space velocity the gas, water and coke yields increased at the cost of the organic phase of the bio-oil. The coke yield was fairly high, 11 wt% of the biomass, at the lowest space velocity. The spent catalysts could be regenerated by burning away the formed coke and thereby regaining the surface area and most of the acid sites.  相似文献   

2.
Rhizome of cassava plants (Manihot esculenta Crantz) was catalytically pyrolysed at 500 °C using analytical pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) method in order to investigate the relative effect of various catalysts on pyrolysis products. Selected catalysts expected to affect bio-oil properties were used in this study. These include zeolites and related materials (ZSM-5, Al-MCM-41 and Al-MSU-F type), metal oxides (zinc oxide, zirconium (IV) oxide, cerium (IV) oxide and copper chromite) catalysts, proprietary commercial catalysts (Criterion-534 and alumina-stabilised ceria-MI-575) and natural catalysts (slate, char and ashes derived from char and biomass). The pyrolysis product distributions were monitored using models in principal components analysis (PCA) technique. The results showed that the zeolites, proprietary commercial catalysts, copper chromite and biomass-derived ash were selective to the reduction of most oxygenated lignin derivatives. The use of ZSM-5, Criterion-534 and Al-MSU-F catalysts enhanced the formation of aromatic hydrocarbons and phenols. No single catalyst was found to selectively reduce all carbonyl products. Instead, most of the carbonyl compounds containing hydroxyl group were reduced by zeolite and related materials, proprietary catalysts and copper chromite. The PCA model for carboxylic acids showed that zeolite ZSM-5 and Al-MSU-F tend to produce significant amounts of acetic and formic acids.  相似文献   

3.
Bifunctional catalysts based on acidified Mordenite or ZSM-5 and platinum or palladium as metal function, were tested for n-pentane hydroisomerization. Two methods were used to introduce platinum: wetness impregnation and microemulsion; palladium was introduced via an organometallic complex. A lower catalytic activity was obtained for palladium catalyst in comparison with platinum samples which is explained by the lower activity of Pd in the dehydrogenation reaction step. Different catalytic behaviour of systems based on Mordenite and ZSM-5 was attributed to zeolite pore structure. The uncompleted removal of surfactant during calcination could explain the lower activity showed by catalysts prepared by microemulsion.  相似文献   

4.
《Fuel》2006,85(14-15):2202-2212
MCM-41, is one of the latest members of the mesoporous family of materials. They possess a hexagonal array of uniform mesopores (1.4–10 nm), high surface areas (>1000 m2/g) and moderate acidity. Due to these properties the MCM-41 materials are currently under study in a variety of processes as catalysts or catalyst supports. The objective of this study was to evaluate different types of MCM-41 materials as potential catalysts in the catalytic biomass pyrolysis process. We expected that the very high pore size and the mild acidity of these materials could be beneficial to reformulate the high molecular weight primary molecules from biomass pyrolysis producing useful chemical (and especially phenolic compounds) and lighter bio-oil with less heavy molecules. Three different samples of Al-MCM-41 materials (with different Si/Al ratio) and three metal containing mesoporous samples (Cu–Al-MCM-41, Fe–Al-MCM-41 and Zn–Al-MCM-41) have been synthesised, characterized and tested as catalysts in the biomass catalytic pyrolysis process using a fixed bed pyrolysis combined with a fixed catalytic reactor and two different types of biomass feeds. Compared to conventional (non-catalytic) pyrolysis, it was found that the presence of the MCM-41 material alters significantly the quality of the pyrolysis products. All catalysts were found to increase the amount of phenolic compounds, which are very important in the chemical (adhesives) industry. A low Si/Al ratio was found to have a positive effect on product yields and composition. Fe–Al-MCM-41 and Cu–Al-MCM-41 are the best metal-containing catalysts in terms of phenols production. The presence of the Al-MCM-41 material was also found to decrease the fraction of undesirable oxygenated compounds in the bio-oil produced, which is an indication that the bio-oil produced is more stable.  相似文献   

5.
Catalytic pyrolysis of tyres: influence of catalyst temperature   总被引:5,自引:0,他引:5  
Two stage pyrolysis–catalysis of used tyres was undertaken to upgrade the derived oil to a highly aromatic oil suitable to be used as a chemical feedstock rather than a liquid fuel. The tyres were pyrolysed in a fixed bed reactor and the evolved pyrolysis gases were passed through a secondary fixed bed reactor containing zeolite catalyst. The pyrolysis reactor was maintained at 500 °C and the influence of catalyst temperature between 430 and 600 °C on the yield and composition of the derived oils was examined. Two zeolite catalysts were examined; a Y-type zeolite catalyst and zeolite ZSM-5 catalyst of differing pore size and surface activity. The influence of the catalyst was to reduce the yield of oil with a consequent increase in the gas yield and formation of coke on the catalyst. Single ring aromatic hydrocarbons, benzene, toluene and xylenes present in the oils showed a marked increase in the presence of the catalyst. Naphthalene and alkylated naphthalenes were also analysed and showed a similar marked increase in the concentration when a catalyst was present. The Y-type zeolite catalyst of larger pore size and higher surface activity was found to produce higher concentrations of aromatic compounds compared to the ZSM-5 catalyst. Increasing the catalyst temperature resulted in significant changes in the concentration of benzene, toluene, xylenes, naphthalene and the alkylated naphthalenes.  相似文献   

6.
在小型固定床装置上,以ZSM-5分子筛为催化剂,研究不同硅铝物质的量比对合成的ZSM-5分子筛织构性能以及酸性对正己烷催化裂解性能的影响。采用XRD、SEM、N2吸附-脱附和NH3-TPD等方法对不同硅铝物质的量比的ZSM-5分子筛进行表征,结果表明,硅铝物质的量比的改变对ZSM-5分子筛的形貌和结构没有影响;随着硅铝物质的量比的增加,分子筛的酸量减少,酸强度减弱,正己烷催化裂解活性逐渐降低。同时,随着酸量减少和酸强度减弱,高硅ZSM-5分子筛上氢转移反应得到明显抑制,丙烯选择性提高。  相似文献   

7.
在水热条件下通过无模板剂法合成了连续的ZSM-5沸石膜,并将其用于生物油的渗透汽化以进行高效脱水分离。ZSM-5沸石膜在强酸性、多组分的生物油体系中保持了很好的化学稳定性和优异的分离选择性,但在分离过程中面临着较强的膜污染问题,导致了膜通量的大幅下降。ZSM-5沸石膜的再生研究表明,膜的渗透通量随着再生温度的升高而逐渐提高。当再生温度为220℃时,ZSM-5沸石膜的渗透通量可以恢复至初始的88%。再生的机理研究表明,ZSM-5沸石膜中大量的晶内孔在生物油体系中极易被污染,从而导致渗透通量迅速下降;而相对较大的晶间孔却难以被完全堵塞,水分子在被污染的ZSM-5沸石膜中主要通过晶间孔进行渗透。上述结果表明,通过合理调控ZSM-5沸石膜的晶间孔的数量和尺寸大小可有效提升ZSM-5沸石膜在生物油中的渗透汽化脱水分离性能。  相似文献   

8.
李攀  李缔  隋海清  邵敬爱  王贤华  陈汉平 《化工学报》2015,66(10):4131-4137
通过浸渍法制备MHZSM-5(M Fe,Zr,Co)催化剂,采用激光粒度分析仪、比表面积及孔径分析仪和X射线衍射仪(XRD)对催化剂的性质进行表征,并在立式两段加热炉上进行纤维素快速热解蒸汽的在线催化实验。对不同催化剂条件下的产物分布特性及生物油组成特性进行分析,结果表明,随着催化剂的引入,液相产率从52.06%最大下降至23.63%,气相产率从42.39%最大提高至70.84%,CoHZSM-5对于热解蒸汽的催化气化效果最为明显;纤维素快速热解生物油中以1,6-脱水-β-D-吡喃葡萄糖(左旋葡聚糖)为主,引入催化剂对纤维素热解蒸汽进行在线催化重整后,产物中芳烃类物质显著增加,以FeHZSM-5和ZrHZSM-5效果最佳;HZSM-5催化下生物油中左旋葡聚糖的含量提高至63.78%;催化后热解油中乙酸及丙酸含量均减少,但降低幅度有限。综合催化剂对产率及组分的影响效果来看,FeHZSM-5和ZrHZSM-5对纤维素快速热解蒸汽的催化调控作用较为显著。  相似文献   

9.
迟克彬  赵震  田志坚  胡胜  阎立军  孟祥彬  李发永 《化工进展》2012,31(11):2477-2482,2487
采用常规水热合成法合成了ZSM-22和ZSM-23分子筛,进而制备了分别含有上述分子筛的催化剂,并借助XRD、SEM、NH3-TPD和Py-IR表征了这两种分子筛和催化剂的结构和酸性,同时以正十二烷为模型化合物,采用固定床反应器研究了Pt/ZSM-22和Pt/ZSM-23催化剂上正十二烷加氢异构反应性能。结果表明,在这种模型反应基础上,催化剂的反应活性和选择性主要取决于催化剂的酸量和酸强度以及酸分布,相对而言,ZSM-22分子筛催化剂由于其弱酸和中等强度酸的含量较高,具有更佳的异构化选择性。  相似文献   

10.
Bio-oil is a potential product from the fast pyrolysis of biomass. However, it should be upgraded before being used in subsequent applications and corrosion prevention. In this work, crude bio-oil from fast pyrolysis of Jatropha curcas residues, which has many long-chain compounds, and a high content of carboxylic acid, was catalytically upgraded over mechanically mixed catalysts (normal ZSM-5 and Y-Re-16) in a fixed-bed reactor. The effects of the key parameters on the yields of light oil products were analyzed, including cracking temperature (350–500°C), reaction time (15–60?min), catalyst loading (10–25%), and mixture ratio between Y-Re-16 and ZSM-5 (10–70%). Experimental test cases were based on a simplex lattice design. The gas chromatograph-mass spectrometer (GC-MS) analysis showed that the catalytic cracking of crude bio-oil using mixed catalysts resulted in the successful formation of short-chain acid methyls. The employed analytical fit of the experimental data gave R2 and the adjusted R2 of 0.902 and 0.843, respectively. The optimized operation conditions to produce aliphatic hydrocarbons from mechanically mixed catalysts were found to be at 400°C, 15?min of reaction time, 15% of catalyst loading, and a mixture ratio of about 1:5.  相似文献   

11.
生物质热解所得目标产物生物油因高含氧量、组分复杂等问题难以直接应用,通过使用适宜的催化剂升级热解蒸气可实现生物油的脱氧提质。本文基于前人研究,首先总结了生物质催化热解中金属氧化物和分子筛催化剂的结构特点、催化原理与催化效果。然后详细介绍了微介孔复合型、金属氧化物/ZSM-5复合型双级催化体系的构建原理、催化模式及其对于生物质催化热解产物分布规律产生的影响,并说明了双级催化体系的可行性与实用性;同时概述了影响生物质催化热解的其他因素,包括原料特性、工艺参数、操作模式等。最后针对目前双级催化热解研究与发展中存在的问题,对进行双级催化模式的比较研究、改进催化体系以降低生产成本、发掘双级催化剂的多种使用价值等方向提出了展望。  相似文献   

12.
Fischer–Tropsch synthesis (FTS) for the production of olefins from syngas was investigated on FeCuK impregnated on zeolite catalysts such as ZSM-5, Mordenite and Beta-zeolite. ZSM-5 supported catalyst showed the best activity among the three catalysts due to the high reducibility of iron oxides. It also exhibited high olefin selectivity compared to a catalyst prepared by physical mixing of the two components, due to the presence of moderate number of acid sites.  相似文献   

13.
A bubbling fluidized bed pyrolyzer was integrated with an in-situ honeycomb as a catalytic upgrading zone for the conversion of biomass to liquid fuels. In the upgrading zone, zeolite coated ceramic honeycomb (ZCCH) catalysts consisting of ZSM-5 (Si/Al=25) were stacked and N2 or recycled non-condensable gas was used as a carrier gas. Ground corncob particles were fast pyrolyzed in the bubbling bed using fine sand particles as a heat carrier and the resulting pyrolysis vapors were passed on-line over the catalytic upgrading zone. The influence of carrier gas, temperature, and weight hourly space velocity (WHSV) of catalyst on the oil product properties, distribution and mass balance were studied. Using ZCCH effectively increased the hydrocarbon yield and the heating value of the dry oil, especially in the presence of the recycled noncondensable gas. Even a low usage of zeolite catalyst at WSHV of 180 h1 was effective in upgrading the pyrolysis oil and other light olefins. The highest hydrocarbon (≥C2) and liquid aromatics yields reached to 14.23 and 4.17 wt-%, respectively. The undesirable products including light oxygenates, furans dramatically decreased in the presence of the ZCCH catalyst.  相似文献   

14.
A study has been carried out by using different techniques (TPO, FTIR, Raman, 13C NMR, GC/MS of the coke dissolved in CH2Cl2) on the nature of the coke deposited on a HZSM-5 catalyst modified with Ni in the transformation of the crude bio-oil obtained by flash pyrolysis of lignocellulosic biomass (pine sawdust) into hydrocarbons. The reaction system has two steps in-line. In the first one, the components of crude bio-oil derived from the pyrolysis of biomass lignin are polymerized at 400 °C. In the second one, the remaining volatile oxygenates are transformed into hydrocarbons in a fluidized bed catalytic reactor at 450 °C. The reaction has been carried out with different bio-oil/methanol mass ratios in the feed (from 100/0 to 0/100). Co-feeding methanol significantly attenuates coke deposition, and the nature of the coke components varies according to the bio-oil/methanol ratio in the feed. When bio-oil is co-fed, the coke deposited on the catalyst has a significant content of oxygenates and oxo-aromatics and consists of two fractions, identified by temperature programmed oxidation, corresponding to external and internal coke in the zeolite crystals. The fraction of external coke is soluble in CH2Cl2, with a high content of oxygenates and oxo-aromatics, and is generated by polymerization of products derived from biomass lignin pyrolysis activated by the zeolite acid sites. The fraction of coke retained within the zeolite crystals is partially insoluble and is formed by several routes: from the intermediates in the transformation of both methanol and bio-oil oxygenates into hydrocarbons; by evolution of the other coke fraction; from the hydrocarbons (with high aromatics content) in the reaction medium.  相似文献   

15.
An approach for biomass flash pyrolysis in a circulating fluid bed (CFB) reactor with continuous solids regeneration is described in this study. The unit is capable of performing conventional and catalytic biomass pyrolysis with the proper solid selection. The production of improved quality liquid products in a direct step through catalytic pyrolysis is investigated in this work. Both conventional and catalytic biomass pyrolysis can be effectively performed in this CFB unit. Flash pyrolysis conditions were achieved and liquid product yields of ∼70 wt% (on biomass feed) were obtained. The effect of specific operating variables including the type of inorganic solid material and the solid/biomass ratio was established on the final liquid product quality and yield. Solid materials considered included silica sand, a commercial fluid catalytic cracking catalyst and a ZSM-5 additive. Catalytic biomass pyrolysis generally leads to the production of additional water, coke and gases compared to conventional pyrolysis. However, the obtained liquid product quality and composition is improved.  相似文献   

16.
The vapour phase acylation of furan and pyrrole was carried out over HZSM‐5(19.7), HZSM‐5(30), HZSM‐5(280), CeHZSM‐5(30), LaHZSM‐5(30), HY and CeHY zeolites in a fixed bed reactor at atmospheric pressure using acetic anhydride as an acylating agent. The catalytic activity of the zeolite catalysts was dependent on the reaction temperature and the type of cation promoter used in the modification of the zeolite surface. The activity of the catalysts varied with the acidity of the zeloite systems tested. The yields of 2‐acetylfuran and 2‐acetylpyrrole with respect to the conversion of furan and pyrrole were 67.5% and 75.5% respectively. The acylation was found to be more active on Brønsted acidic sites available over zeolite systems.  相似文献   

17.
分子筛催化剂的孔径与生物油分子尺寸之间的差异造成分子筛催化剂的择形选择性。分子筛的孔径数据来自晶体结构分析,而生物油的分子尺寸数据很难获得,对生物油的分子尺寸进行估算十分必要。采用热裂解气质联用技术(Py-GC/MS)研究了纤维素热解生物油的组成成分,以Joback基团贡献法为基础计算了纤维素热解生物油各组成成分的动力学直径,分析了纤维素热解生物油的分子尺寸分布特性。结果表明,纤维素在350~600℃热解产生生物油的主要成分为脱水糖、呋喃衍生物和酮类化合物,生物油各组成成分的动力学直径主要分布在[0.500, 0.600) nm。当热解温度由350℃升至600℃时,动力学直径位于[0.550, 0.600) nm的生物油各组成成分的峰面积百分比由88.72%降至64.53%,位于[0.500, 0.550) nm的生物油各组成成分的峰面积百分比则由2.88%升至21.95%。纤维素催化裂解制备高品质液体燃料可选用ZSM-5, ZSM-11和IM-5等孔径尺寸0.500~0.600 nm的分子筛催化剂。  相似文献   

18.
Shape-selective catalysts for the disproportionation of toluene were prepared by the modification of the cylinder-shaped ZSM-5 zeolite extrudates with chemical liquid deposition with TEOS (tetraethyl orthosilicate).Various parameters for preparing catalysts were changed to investigate the suitable conditions.The resulting cata-lysts were tested in a pressured fixed bed reactor and characterized by SEM (scanning electron microscopy).The conversion of toluene and para-xylene selectivity were influenced remarkably by the n(SiO2)/n(Al2O3) ratio of ZSM-5 zeolite,the type and amount of deposition agent,acid and solvent used,and the time and cycle of deposition treatment.TEOS was proved to be a more efficient agent than the conventional polysiloxanes when the deposition amount was low.The catalyst prepared at the suitable conditions exhibited a high para-xylene selectivity of 91.1% with considerable high conversion of 25.6%.SEM analyses confirmed the formation of a layer of amorphous silica on the external surface of ZSM-5 zeolie crystals,which was responsible for the highly enhanced shape-selectivity.  相似文献   

19.
云南松热解及其热解产物的研究   总被引:2,自引:0,他引:2  
采用自制固定床反应器对云南松木粉进行热解,探讨了热解温度、原料颗粒尺寸和氮气流速对云南松热解特性的影响,并采用GC-MS对生物油的组分含量进行分析。结果表明:在热解温度为500 ℃,原料颗粒尺寸为0.250~0.420 mm,氮气流速为150 mL/min条件下,生物油的产率最高为50%,液体组分主要以2,6-二叔丁基对甲酚、2-甲氧基-4-甲基苯酚、异丁香酚、愈创木酚为主,占液体总量的39.24%。  相似文献   

20.
通过表面响应法,以Box-Behnken试验原理,对生物质(玉米秸秆)的非催化热解进行三因素试验,其中生物油产率为响应值,温度、升温速率、氮气流速为自变量,确定最大生物油产率的工艺参数进行催化热解。以硅酸四乙酯为硅源,通过水热合成法合成了复合催化剂ZSM-5/SBA-15,并进行玉米秸秆的微波催化热解产物分析。通过XRD、SEM、TEM、NH3-TPD进行催化剂表征,得到复合催化剂不仅具有介孔催化剂SBA-15的性质,且兼备微孔催化剂ZSM-5的性质。通过GC-MS分析,复合催化剂ZSM-5/SBA-15的加入,相比非催化热解烃类收率(6.42%)和酚类收率(39.65%)都有所增加。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号