首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The catalytic activity of Cu-Mn mixed oxides with varying Cu/Mn ratios prepared by co-precipitation method was examined for the total oxidation of propane. The nature and phase of the metal oxide species formed were characterized by various methods such as X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), H2 temperature-programmed reduction (TPR) as well as BET surface area measurement. The co-precipitation method provides highly interdispersed copper and manganese metallic elements forming Cu-Mn mixed oxide of spinel structure (Cu1.5 Mn1.5O4). Besides the spinel-type Cu-Mn mixed oxide, CuO or Mn2O3 phases could be formed depending on the Cu/Mn molar ratio of their precursors. The catalytic activity of Cu-Mn mixed oxide catalyst for propane oxidation was much higher than those of single metal oxides of CuO and Mn2O3. The higher catalytic activity likely originates from a synergic effect of spinel-type Cu-Mn mixed oxide and CuO. The easier reducibility and BET surface area seems to be partially responsible for the high activity of Cu-Mn mixed oxide for total oxidation of propane.  相似文献   

2.
Nano-crystalline cerium oxide catalysts have been prepared by precipitation and evaluated for the total catalytic oxidation of naphthalene, which is a polycyclic aromatic hydrocarbon (PAH). Ceria synthesised by precipitation with urea was the most active catalyst for oxidation of naphthalene to carbon dioxide. The urea precipitated CeO2 demonstrated over 90% naphthalene conversion to carbon dioxide at 175°C (100 ppm naphthalene, GHSV=25,000 h−1), whilst ceria precipitated via a carbonate only gave 90% conversion at 275°C. Comparison with known high activity total oxidation catalysts, Mn2O3 and 0.5% Pt/γ-Al2O3, showed that the urea precipitated CeO2 was a more effective catalyst for naphthalene total oxidation. At temperatures below those required to achieve catalytic activity the adsorption capacity of urea precipitated ceria for naphthalene was considerably greater than any of the other catalysts examined. The high adsorption capacity of the material provides the advantage that it can be used as a combined catalyst and adsorbent to remove PAHs from waste streams.  相似文献   

3.
Coprecipitated Au on transition metal oxide catalysts have been tested for their activity toward methane oxidation. Catalyst activities fall in the order Au/Co3O4>Au/NiO> Au/MnOx> Au/Fe2O3 > Au/CeO. The Au/Co3O4 catalyst is active just below about 250°C. The catalysts are proposed to have more than one type of reactive site since the supports are also active at higher temperatures. Analysis of spent catalysts with X-ray photoelectron spectroscopy indicates that Au exists in at least two oxidation states on some of them, a reduced state and an oxidized state. The activity for methane oxidation increases with increasing oxidation of Auin the oxidized state.  相似文献   

4.
A series of pure CeO2, ZrO2, and CeZrOx mixed metal oxide catalysts were prepared by a wetness impregnation method and were applied to the dehydrogenation of propane to propylene at 500°C and 0.1 MPa. The prepared catalysts were characterized by thermal gravimetric analysis (TGA), Brunauer, Emmett, and Teller (BET), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscopes (TEM), Raman spectroscopy, and H2-TPR. It was observed that the zirconium content of the solid solution of the mixed metal oxide catalyst was 5%–25%, while the zirconium content of the material with phase segregation was higher (50%). The addition of zirconium was proven to decrease the oxygen vacancy concentration on the catalyst surface and change the intensity of (111) crystal of cerium oxide in the catalysts. Among the prepared catalysts, the Ce0.90Zr0.10Ox catalyst with the maximum strength of the (111) crystal plane of cerium oxide exhibited the better catalytic oxidation performance for the dehydrogenation of propane to propylene. Compared with ZrO2 in the blank experiment, the average propane conversion and propylene selectivity of the Ce0.90Zr0.10Ox catalyst were increased by 10.78% and 17.95%, respectively.  相似文献   

5.
TeMxMo1.7O mixed oxides (M = V and/or Nb; x = 0-1.7) have been prepared by calcination of the corresponding salts at 600 °C in an atmosphere of N2. A new crystalline phase, with a Te/V/Mo atomic ratio of 1/0.2-1.5/1.7, has been isolated and characterised by XRD and IR spectroscopy. This phase is observed in the TeVMo or TeVNbMo mixed oxide but not in the TeNbMo mixed oxide. The new crystalline phase shows an XRD pattern similar to Sb4Mo10O31 and probably corresponds to the M1 phase recently proposed by Aouine et al. (Chem. Commun. 1180, 2001) to be present in the active and selective MoVTeNbO catalysts. Although these catalysts present a very low activity in the propane oxidation, they are active and selective in the oxidation of propene to acrolein and/or acrylic acid. However, the product distribution depends on the catalyst composition. Acrolein or acrylic acid can be selectively obtained from propene on Nb-free or Nb-containing TeVMo catalysts, respectively. The presence of both V and Nb, in addition to Mo and Te, appears to be important in the formation of acrylic acid from propene.  相似文献   

6.
Gang Wang  Yuqing Zha  Tong Ding 《Fuel》2010,89(9):2244-95
A series of high-temperature close coupled catalysts Pd/Ce-Zr-M/Al2O3 (M = Y, Ca or Ba) were prepared by ultrasonic-assisted successive impregnation. The catalysts were subjected to a series of characterization measurements. The results of activity evaluation show that Y is the best promoter for propane total oxidation, especially at the calcination temperature of 1100 °C. It is interesting that although the BET specific surface areas and the dispersion of Pd species decrease, the Y-promoted catalyst calcined at 1100 °C shows higher catalytic activity than the corresponding one calcined at 900 °C and better sulfur-resisting performance. The results of TEM, TPHD and CO chemisorption indicate that Y can remarkably increase the dispersion of Pd species. However, the dispersion is hard to be connected with the activity increase as the calcination temperature is elevated from 900 to 1100 °C. The change of active phases and the interaction between Pd species and the supports may account for the activity enhancement. Combined with XRD, H2-TPR and O2-TPD results, it is deduced that the coexistence of metallic Pd and PdO species in the catalysts calcined at 1100 °C may be also favorable to C3H8 oxidation. In a word, Pd/Ce-Zr-Y/Al2O3 is indeed a promising high-temperature close coupled catalyst applicable to high temperature.  相似文献   

7.
Ag-Pt- and Pd-doped LaMnO3-based perovskite catalysts were prepared and their activity in the oxidation of toluene, n-heptane and ethanol was investigated. The activity of LaMnO3-based catalyst was very high in the oxidation of each compound tested. The Ag-doped catalyst was the most active in the oxidation of each compound and it displayed the highest BET specific surface area (SSA) also. The influence of Pt or Pd doping on perovskite activity is negligibly small. Pt-doped catalysts are slightly more active while Pd-doped catalysts are slightly less active than the pure perovskite. Thermogravimetric-differential thermal analysis (TG-DTA) for the catalyst precursor indicates that above 500 °C a perovskite structure began to form. The XRD analysis reveals the presence of the LaMnO3.15 perovskite phase and, additionally, the presence of some metal oxide phases (e.g. La2O2CO3, Mn2O3) and carbon. BET SSA measured after the oxidation tests was found to decrease for each catalyst. There was no relation between the chemical composition of the catalyst and the loss of SSA.  相似文献   

8.
Vanadium magnesium oxide catalysts prepared in this work were found active in selective oxidation of propane to propene. A selectivity as high as 79% was obtained at 10% conversion (813 K). No oxygenated or C2 products were detected and the catalysts were found to undergo no change in activity over many weeks of operation. Under electrochemical pumping of oxygen (EOP) towards the catalyst (with oxygen present in the feed gas), both conversion and selectivity were found to increase slightly as external current increased, indicating the effect of electrical current can be exhibited by an oxide catalyst. However, in the absence of oxygen in the feed gas, EOP could lead to an even higher selectivity: 84 and 86.9% respectively for a 24 V-Mg-O and a 24 V-Mg-O (Ag) (1/2) catalyst. The overall results obtained suggest that electrochemically supplied oxygen is more selective towards C3H6. Mechanisms of both catalytic and electrocatalytic oxidation of propane were tentatively suggested, with surface oxygen ion vacancy identified as active surface species and the rate determining step involving heterolytic splitting of the C3H8 molecule to form a surface bonded C3H 7 ion and a surface hydroxyl ion. The higher selectivity towards C3H6 in case of EOP was explained on this basis. While mixing with Ag powder was found to improve significantly the electrocatalytic performance of vanadium magnesium oxide, its role appears to be non-chemical: it simply gives rise to a larger area of the gas/catalyst/Ag electrode interface.  相似文献   

9.
Te-free and Te-containing Mo–V–Nb mixed oxide catalysts were diluted with several metal oxides (SiO2, γ-Al2O3, α-Al2O3, Nb2O5, or ZrO2), characterized, and tested in the oxidation of ethane and propane. Bulk and diluted Mo–V–Nb–Te catalysts exhibited high selectivity to ethylene (up to 96%) at ethane conversions <10%, whereas the corresponding Te-free catalysts exhibited lower selectivity to ethylene. The selectivity to ethylene decreased with the ethane conversion, with this effect depending strongly on the diluter and the catalyst composition. For propane oxidation, the presence of diluter exerted a negative effect on catalytic performance (decreasing the formation of acrylic acid), and α-Al2O3 can be considered only a relatively efficient diluter. The higher or lower interaction between diluter and active-phase precursors, promoting or hindering an unfavorable formation of the active and selective crystalline phase [i.e., Te2M20O57 (M = Mo, V, and Nb)], determines the catalytic performance of these materials.  相似文献   

10.
The oxidation states of Rh in NaY supported catalysts have been studied by temperature programmed reduction (TPR). After calcination of the exchanged catalyst to 380°C, both RhO2 and Rh2O3 are identified, besides small amounts of RhO+ and Rh3+. Quantitative reduction is possible for samples calcined at temperatures not exceeding 500°C. Re-oxidation of the reduced samples leads to formation of RhO2 and Rh2O3, with negligible protonolysis to Rh3+. The dioxide prevails after re-oxidation at 320°C, but the sesquioxide after oxidation at 500°C. In the temperature regime where both oxides coexist the reduction of NO with propane is catalyzed even at an O2/C3H8 ratio of 10. Total oxidation of propane reaches 80% at 350°C.  相似文献   

11.
Pd–chloride precursor salt was used to prepare Pd/Al2O3 catalysts. TPSR measurements showed three distinct reactions for the oxidation of propane on palladium surface under excess of hydrocarbon: complete oxidation, steam reforming and propane hydrogenolysis. Propane oxidation on palladium catalysts was related to the Pd2+ sites observed on Pd/Al2O3 through infrared of adsorbed carbon monoxide. In fresh catalysts reduced by H2, the IR spectra showed the linear and bridge adsorbed CO species on the Pd0 surface. After propane reaction, a new band at 2130 cm-1 related to CO adsorption on Pd2+ species was noted. Carbon monoxide species adsorbed on Pd0 were also observed in all samples after reaction. Our results suggest surface ratios of Pd0/PdO during the propane oxidation. On the other hand, time on stream conversions of the complete oxidation of propane were affected by either the water generated during the reaction or added as a reactant at 10 vol%. The water generated by the reaction helped to eliminate chlorine residues in the form of oxychloride species leading to an increasing of the activity. However, the presence of water into the reaction mixture caused a strong decreasing of the activity. The inhibition mechanism of propane oxidation in the presence of water consisted in the dissociative adsorption of water on palladium sites with the possible formation of palladium hydroxide (Pd–OH) at the surface, diminishing the number of active surface sites. Dynamic fluctuations into the reaction conditions supported the idea that a pseudo‐equilibrium adsorption–desorption of water was reached. After water removal or increasing in the reaction temperature the equilibrium was shifted to the direction of OH–Pd decomposition. This behavior suggests that the inhibitory effect of water is a reversible phenomenon, being a function of the amount of water and the reaction temperature. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
Catalytic oxidation of propane to produce propene was investigated over molybdenum-based mixed oxide catalysts. Cobalt or magnesium oxide combined with molybdenum oxide exhibits the best catalytic performance for the oxidative dehydrogenation of propane. Catalytic activities of both Co-Mo-O and Mg-Mo-O vary drastically on the catalyst composition and Co(Mg)0.95Mo1.0Ox having small amounts of free MoO3 on the Co(Mg)MoO4 surface shows the highest catalytic activity keeping a considerably high selectivity to propene. The catalytic activity also depends strongly on the acidic properties of catalysts and MoO3 clusters formed on the surface of Co(Mg)MoO4 are responsible for the activities for the oxidative dehydrogenation of propane.  相似文献   

13.
Kinetic parameters are estimated for a sequential Mars van Krevelan (MVK) reaction model occurring over several supported vanadium oxide (vanadia) catalysts involved in the propane oxidative dehydrogenation (ODH) reaction. The estimated kinetic parameters, pre-exponential factors and activation energies, are used to understand the effect of vanadia loading and oxide support. The pre-exponential factors and vanadia normalized pre-exponential factors vary with vanadia loading and oxide support. The monotonic increase in normalized pre-exponential factors with vanadia loading and the variation of pre-exponential factors with oxide support appears to be related to the change in acidity/basicity of the catalyst and the redox nature of the catalyst, respectively. The activation energy for propene degradation does not significantly change with catalyst; however, the activation energy for propane oxidation is different for the V2O5/Al2O3 catalyst. It appears that two important considerations are required for the development of an efficient propane ODH catalyst: a high rate constant associated with the propane oxidation reaction, and a high ratio of the rate constant for propene formation to degradation reaction. Based on the observations in the present study it is proposed that a higher TiO2 support surface area will assist in increasing the propane oxidation activity and propene yield.  相似文献   

14.
The oxidation of perchloroethylene (PCE) was investigated over chromium oxide catalysts supported on TiO2, Al2O3, SiO2, SiO2–Al2O3 and activated carbon. The phase of chromium oxide on the catalyst surface is critical for the oxidation of PCE. The catalytic activity of PCE removal enhances as the formation of Cr(VI) species on the catalyst surface increases. The surface area and the type of the catalyst supports were also essential for high performance in the PCE oxidation. In addition, the structure of Cr(VI) on the catalyst surface also plays an important role for the decomposition of PCE. The polymerized Cr(VI) mainly formed by the interaction of metals with the support is the active reaction site for the present reaction system. CrOx/TiO2 reveals the strongest PCE removal activity among the catalysts examined in the present study. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
Tungsten-containing hexagonal mesoporous silica (W-HMS) supported tungsten oxide catalysts (WOx/W-HMS) was prepared for the selective oxidation of cyclopentene with aqueous hydrogen peroxide to glutaraldehyde. X-ray diffraction (XRD) results indicated that the crystal form of the active phase (tungsten oxide) of the WOx/W-HMS catalysts was dependent on the W loading and calcination temperature. X-ray photoelectron spec- troscopy (XPS) analysis revealed that the dispersed tungsten oxides on the surface of W-HMS support consisted of a mixture of W(V) and W(VI). It was found that a high content of amorphous W species in (5+) oxidation state resuited in the high catalytic activity. When the W loading was up to 12% (by mass) or the catalyst precursor was treated at temperature of 623 K, the catalytic activity decreased due to the presence of WO3 crystallites and the oxidation of W(V) to W(VI) on the catalyst surface. Furthermore, NH3-temperature-programmed-desorption (NH3-TPD) analysis showed that the effects of W loading and calcination temperature on the acidity of the catalysts were related to the catalytic activity. A high selectivity of 80.2% for glutaraldehyde with a complete conversion of cyclopentene was obtained over 8%WOx/W-HMS catalyst calcined at 573 K after 14 h of reaction.  相似文献   

16.
The catalytic activity of polycrystalline Pd films deposited on 8 mol% Y2O3-stabilized–ZrO2 (YSZ), an O2–-conductor, can be altered reversibly by varying the potential of the Pd catalyst film via the effect of nonfaradaic electrochemical modification of catalytic activity (NEMCA) or electrochemical promotion. The complete oxidation of ethylene was investigated as a model reaction in the temperature range 290–360 °C and atmospheric total pressure. The rate of C2H4 oxidation can be reversibly enhanced by up to 45% by supplying O2– to the catalyst via positive current application. The steady-state rate change is typically 103–104 times larger than the steady-state rate I/2F of electrochemical supply or removal of promoting oxide ions. The observed behaviour is discussed on the basis of previous NEMCA studies and the mechanism of the reaction.  相似文献   

17.
The selective oxidation of propane to acrolein was performed on Ce-doped Ag0.3Mo0.5P0.3O x catalysts. The maximal acrolein yield of 4.4% with 28.7% acrolein selectivity was obtained on Ce0.1Ag0.3Mo0.5P0.3O y catalyst. The apparent activation energy of Ag0.3Mo0.5P0.3O x catalysts decreased with the addition of Ce. The addition of Ce facilitated the C-H activation of propane and enhanced conversion of intermediate propene to acrolein. The reducibility and the concentration of Mo5+ improved as the Ce content increased and was closely related to acrolein selectivity and propane conversion. The role of Ce in these catalysts was proposed: there was formation of the redox cycle Ce3+ + Mo6+ Ce4+ + Mo5+ in Ce-doped Ag0.3Mo0.5P0.3O x catalysts, leading to the modification of properties and catalytic performance of these catalysts.  相似文献   

18.
This work studies toluene abatement from gaseous streams, using gamma-Al2O3 supported palladium and platinum catalysts, titania and gamma-Al2O3 supported vanadium oxide catalysts and ZnO/Al2O3 supported copper oxide catalyst, characterized by textural and thermal analyses, X-ray diffraction and fluorescence. Noble metal catalysts have shown higher activity but lower selectivity toward total oxidation, with higher selectivity toward undesired products, like CO and benzene.  相似文献   

19.
An investigation was conducted of noble metal and metal oxide catalysts deposited on Al2O3. The noble metals Pt, Pd, Rh the metal oxides CuO, SnO2, CoO, Ag2O, In2O3, catalysts were examined. Also investigated were noble metal Pt, Pd, Rh-doped In2O3/Al2O3 catalysts prepared by single sol–gel method. Both were studied for their capability to reduce NO by propene under lean conditions. In order to improve the catalytic activity and the temperature window, the intermediate addition propene between a Pt/Al2O3 oxidation and metal oxide combined catalyst system was also studied. Pt/Al2O3 and In2O3/Al2O3 combined catalyst showed high NO reduction activity in a wider temperature window, and more than 60% NO conversion was observed in the temperature range of 300–550 °C.  相似文献   

20.
The influence of molybdenum oxide on the dispersion and activity of vanadium oxide supported on alumina was investigated. A series of MoO3 catalysts were prepared using monolayer V2O5/-Al2O3 catalysts by impregnation method. The catalysts were characterized by X-ray diffraction and oxygen chemisorption at –78 °C. The catalytic properties were evaluated for the vapour-phase oxidation of methanol. The addition of MoO3 to V2O5/-Al2O3 results in the decrease of dispersion of vanadia and also the activity for the oxidation reaction. However, the selectivity of formaldehyde was found to increase with MoO3 loading indicating that MoO3 created additional sites for partial oxidation reaction.IICT Communication No. 2211.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号