首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 171 毫秒
1.
该文将锁相红外热成像技术应用到2A12铝合金材料制成的铆接结构试件疲劳极限的快速测定上,将锁相红外热成像技术获得的结果与现有的该种材料在不同应力集中系数和应力比下疲劳极限试验数据进行插值得到的结果进行了对比,并与通过传统的阶梯法获得的试验结果进行了对比,验证了对于过盈量不大的普通铆接结构件来说,可以将锁相红外热成像技术应用到疲劳危险点处于多轴应力状态的金属铆接结构试件疲劳极限的快速测定上。  相似文献   

2.
基于锁相红外热成像理论, 对复合材料网格加筋结构的几类典型缺陷进行无损检测, 采用法国Cedip公司开发的锁相红外热成像系统对检测结果进行分析。讨论了加载频率、 输出电压偏移量对检测的影响。结果表明, 相位图比幅值图含有更多的缺陷信息。不同的加载频率会产生不同的检测结果, 选择恰当的加载频率是检测的关键; 增加输出电压偏移量有利于检测。该方法可用于对复合材料未知缺陷的检测。   相似文献   

3.
红外热成像技术在零件无损检测中的发展和应用现状   总被引:1,自引:0,他引:1  
红外热成像技术是一种通过外加激励获得零件表面温度场分布,并从热像图中提取零件损伤信息的无损检测技术,它具有快速、实时、非接触等优点,研究和应用前景广阔。综述了红外热成像无损检测技术的发展现状和应用实例,通过对比3种常用的红外热成像技术:脉冲红外热成像、超声红外热成像和锁相红外热成像,认为超声锁相红外热成像技术具有其他几种技术无法比拟的优势,并从检测工艺和信号处理等方面提出了改进此技术的具体措施。  相似文献   

4.
目前工程中出现的裂纹形态主要是I型,大多数工程构件中裂纹的应力强度因子难以直接接触测量,建模计算也因受力条件复杂而耗时和困难。红外热像技术以非接触式测量方法为研究材料和结构的断裂问题提供新的实验手段。通过研究在不同频率循环拉伸条件下304不锈钢试件的热-力响应,得到材料体积应变与温度变化的定量关系,进而对紧凑拉伸试件进行循环加载,同步测量裂纹尖端的温度场,获得I型材料裂尖附近应力强度因子。实验结果表明:在近绝热条件下,材料热弹性区的温度变化与体积应变成定量线性关系;不同荷载条件下实测裂纹尖端附近应力强度因子与理论值对比,误差均在2%以内,说明利用红外热像实验方法测量工程实际中循环荷载情况下的应力强度因子是可行并且可靠的。  相似文献   

5.
加载频率对悬臂梁振动疲劳特性的影响   总被引:1,自引:1,他引:0       下载免费PDF全文
研究了加载频率对悬臂梁振动疲劳特性的影响。首先,给三组相同的悬臂梁结构分别施加三种不同频率(悬臂梁的固有频率,略大于固有频率和略小于固有频率)的正弦激励,使其具有相同的初始应力,试验测得应力随循环次数的变化规律;其次,在试验测得应力历程的基础上,计算悬臂梁的疲劳损伤量,研究在相同初始应力下不同加载频率对同一悬臂梁振动疲劳特性的影响;最后,将预估结果与试验测得的固有频率下降量作了对比。结果表明:加载频率对振动疲劳寿命有较大的影响,文中给出的预估结果与试验结果比较吻合  相似文献   

6.
《中国测试》2019,(11):1-8
为降低油气管道聚乙烯层粘接处的脱粘、粘接缝隙等面积型缺陷造成的安全事故发生概率,通过主动式红外热成像技术以及对不同深度的聚乙烯材料缺陷进行检测,采用主成分分析法和锁相技术对获取的原始红外图像进行处理,实现深度在5 mm处的粘接缺陷定量检测,该深度为油气管道聚乙烯层的标准尺寸大小。通过实验确定锁相频率与图像信噪比的关系,可为提高锁相检测效果提供依据。研究表明:激励频率在0.005~0.006 Hz范围内,锁相检测可以满足在役油气管道5 mm深的粘接缺陷检测,主成分分析法可以有效解决激励导致的温度分布不均匀带来的噪声干扰,弥补锁相检测方法的不足,提升缺陷可检测深度,该方法可以将原始温度分布图像的信噪比均值由0.637 dB提升至8.033 dB。  相似文献   

7.
为了满足应用于应力腐蚀开裂试验的应力环的现场校准需求,研制了一种便携式应力环校准装置。根据应力环校准过程中载荷力加载范围和加载速率以及试验次数的要求,设计了一台小型载荷加载装置,该装置可以实现最大30 kN的载荷力。同时,根据应力环的结构以及变形测量准确度要求,以CCD相机为测量元件,设计了一套基于数字图像技术的非接触式变形测量系统,用于测量应力环变形。实验证明,研制的校准装置力值测量最大误差为-0.04%,变形测量最大误差为-0.002 mm。  相似文献   

8.
通过不排水循环三轴试验,并考虑不同循环应力水平及加载频率的影响,研究了软粘土在循环荷载作用下的孔隙水压力及变形特性,分别探讨了这些特性随循环加载时间和加载次数的不同变化规律。研究结果表明,对于相同循环应力水平,相同加载次数下不同加载频率的软粘土特性有所不同,而相同加载时间下不同加载频率的软粘土特性基本相同。此外,无论加载频率为何数值,一旦循环应力水平超过临界值,软粘土破坏必将发生。为了深入研究应力水平和加载频率的耦合作用,该文从应力控制循环加载试验中的应变速率着手,对软粘土的特性进行了分析。结果表明,在应力水平相同的情况下,软粘土在不同加载频率下的应变速率是基本相同的,由此可得对于软粘土在循环荷载作用下特性的影响,应力水平比加载频率更为重要。  相似文献   

9.
纯铜低周疲劳中的温度响应与微观形貌变化   总被引:1,自引:0,他引:1  
为了研究纯铜在低周疲劳中的温度响应与微观形貌,借助于红外热像仪及远距离高倍显微镜同步监测工业纯铜的表面疲劳变化,同时运用扫描电子显微镜(SEM)对试样断口进行微观分析.研究结果表明:试样表面温度的变化与表面微观形貌的变化具有明显的相关性,并受应力水平及加载频率的影响,表面最高温升与加载频率呈线性关系;试样断口出现明显的裂纹扩展区和瞬断区,且随着应力水平及加载频率的增加而形成较大的瞬断区及较多的韧窝.  相似文献   

10.
对用于半导体器件温度测量的显微红外热成像技术的原理及应用情况进行了总结。显微红外热成像技术基于普朗克黑体辐射定律,依靠测量被测件表面发出的红外辐射确定温度。在中红外波段下,该技术具备最高1. 9μm的空间分辨力,配合发射率修正技术,能够测量非黑体的微小半导体器件的真实温度。该技术具备稳态温度成像测量能力、连续毫秒级甚至微秒级的高时间分辨力成像测量能力和脉冲条件下器件温度测量能力。在各类半导体器件不同工作条件下的温度测量方面得到了广泛的应用。  相似文献   

11.
Squats are a major problem on the world railways. The non-destructive evaluation technique is becoming increasingly attractive in the detection of near surface defects on track. Non-destructive thermal evaluation is one such method of inspection technique that can be used for the detection of near surface defects. Its sub-group of lock-in thermography is under analysis. Lock-in thermography utilizes an infrared camera to detect the thermal waves and then produces a thermal image, which displays the local thermal wave variation in phase or amplitude. There are few studies into the actual experimental representation of complex subsurface defects when concerning lock-in thermography processes. While this may be less of a concern given the purpose of numerical defect characterization to reduce the need for extensive experimental pre-tests, the necessity for (artificial) representations of a defect will inevitably be required for validation. The research outlined in this paper examines the use of 3D finite element modelling (FEM) as a potential flexible tool in simulating the lock-in thermography process for detecting squats in track. In addition, lock-in analysis proved that the correct frequency range had to be selected for the material to detect the defect. As maximum positive and negative phase angles were located at “optimum” frequencies, at certain frequencies lead to minimal phase angle difference to which the defects were not detectable (blind frequency) by using the incorrect testing. The 3D finite element method has advantage for determining the “optimum” thermal excitation frequencies compare with experimental investigation. The experimental results show that 3D FEM models can be used to defect the location and the depth of squats in the railway.  相似文献   

12.
We present a nondestructive testing method based on lock-in thermography with mechanical heat excitation. Stresses are generated in the sample by vibrating it with a mechanical shaker. The mechanical energy is converted to thermal energy due to the acoustical damping. The defected regions have a stronger damping and also a stress concentration next to them, both of which result in a higher temperature generation. Because of the changes of the thermal properties, the defects also affect the heat conduction. These phenomena result in thermal anomalies due to the defects. The high-frequency vibration used for excitation is amplitude-modulated with a low frequency. The magnitude and phase of the sample temperature with respect to the modulation are measured with an infrared camera and a software lock-in technique. The use of phase information increases the reliability of the defect detection, and the application of high vibration frequencies results in a good thermal signal even at low stress levels, which helps to keep the test truly nondestructive. The suitability of the method was proved with samples of CFRP and aramid composites, and different polymers. The measurements included detection of impact damages, inclusions, voids, and cracks, and the evaluation of stress level distributions, paint thicknesses, and quality of bondings.  相似文献   

13.
The paper aims to illustrate three advantages of infrared thermography as a non-destructive, real-time and non-contact technique. It permits first observation of the physical processes of damage and failure in metals, and in particular, automotive components subjected to fatigue loading, second detection of the occurrence of intrinsic dissipation, and third evaluation of the fatigue strength in a very short time, compared to traditional testing techniques. In addition, infrared thermography readily describes the damage location and the evolution of structural failure.  相似文献   

14.
Optically excited lock-in thermography (OLT) has been exploited for quantitative assessment of simulated subsurface defects in thick glass fiber reinforced polymer (GFRP) composite laminates routinely employed for the manufacturing of luxury yachts. The paper investigates the detection limits associated to defects geometry and depth as well as recognition of barely visible impact damage over the external gel-coat finish layer. The obtained results demonstrated the effectiveness of lock-in infrared thermography as a powerful and non-contact full-field measurement technique for the inspection of large GFRP structures. In particular, results showed that, by using a transmission set-up instead than a reflection one, accurate assessment (standard uncertainty < 1.4%) of impact damages could be attained, whereas estimation of delaminations depth is critically influenced by the actual area and aspect ratio of the discontinuity. A simple model to account for this dependency has been proposed.  相似文献   

15.
Fracture toughness of AZ31B magnesium alloy subjected to quasi-static loading was investigated by infrared thermography. The results showed that temperature evolution around the crack propagation path during fracture underwent three stages: initial steady stage, monotonic increase stage and final steady stage. The temperature increase at the beginning of stage II is nearly corresponding to the initiation of unstable crack propagation. And based on this phenomenon, a method applying infrared thermography to estimate fracture toughness of AZ31B magnesium alloy was proposed. Fracture toughness was calculated through infrared thermography, which was in good agreement with the result determined by traditional standard method. Finally, the fracture mechanism was investigated.  相似文献   

16.
The aim of this study is to utilize infrared thermography to assess the critical damage states, and to capture the evolving damage processes, of 5HS and 8HS woven carbon fiber/epoxy composites subjected to uniaxial in-plane tensile quasi-static and fatigue loading. Quasi-static test results revealed that the dominant damage mechanisms were matrix cracks contained within the weft yarns, which initiated at the thermally-detected material thermoelastic limit and were confirmed through SEM observations. An established thermographic technique was also used to confirm the existence of a high cycle fatigue limit, which may in fact be a characteristic of all fabric reinforced polymeric composites. Temperature profiles captured during cyclic testing directly correlated with corresponding stiffness degradation profiles, providing support for thermography as an accurate fatigue damage metric. The infrared camera was able to detect the evolution of weft yarn cracking during the initial stage, as well as the initiation and growth of interply delamination cracking during the final stage of three-stage cyclic damage evolution. The reported results and observations provide an important step in the validation of thermography as a powerful non-destructive tool for assessing the development of damage, as well as predicting the critical damage states of fiber reinforced polymeric composite materials.  相似文献   

17.
In-service non-destructive detection of cracks is a challenging task for industries to prevent failures. In the last decades several methods based on infrared thermography have been proposed to detect vertical cracks. In a recent paper, the authors used a lock-in thermography setup with focused laser excitation to characterize the width of infinite vertical cracks accurately. As this method is very time consuming, we propose in this work to measure the width of an infinite vertical crack using pulsed laser spot infrared thermography. A semi-analytical solution for the surface temperature of a sample containing such a crack when the surface is illuminated by a pulsed Gaussian laser spot close to the crack is obtained. Measurements of the surface temperature on samples containing calibrated cracks have been performed using an infrared camera. A least square fit of the surface temperature is used to retrieve the thickness of the crack. Very good agreement between the nominal and retrieved thickness of fissure is found, even for widths down to 1 \(\upmu \)m, confirming the validity of the model.  相似文献   

18.
This paper presents a NDT by a CO2 Laser infrared thermography applied to defect detection in CFRP. The CO2 Laser is an infrared laser with the wavelength of 10.6 μm. This excitation has a controllable heating beam by a geometric relation D = 0.01575·d, which allows to heat the samples at a specific position (placed at the distance “d”) and area (of a diameter “D”). The PPT interpretation principle was used to reduce the non-uniformity’s effect of the excitation causing inhomogeneous heat. The test with this excitation is much faster than the tests with conventional lock-in thermography method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号