首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
We report the identification, synthesis, and field bioassays of a female-produced sex attractant pheromone for the cerambycid beetle Desmocerus californicus californicus Horn. Headspace volatiles from females contained a sex-specific compound, (R)-desmolactone [(4R,9Z)-hexadec-9-en-4-olide], which elicited strong responses from the antennae of adult males in coupled gas chromatography-electroantennogram analyses. Short syntheses of both enantiomers were developed from commercial chiral synthons. In field bioassays, significant numbers of males were collected in traps baited with (R)-desmolactone, whereas the (S)-enantiomer attracted no males. The racemate was less attractive than the pure (R)-enantiomer, indicating some degree of antagonism by the unnatural enantiomer. This compound is the first example of a new structural class of cerambycid pheromones, and is the second pheromone identified for a species in the subfamily Lepturinae.  相似文献   

2.
We report the identification, synthesis, and field bioassays of a female-produced sex attractant pheromone component of the cerambycid beetle Ortholeptura valida (LeConte). Headspace volatiles from females contained a female-specific compound, (Z)-11-octadecen-1-yl acetate, which elicited a strong response from antennae of adult males in coupled gas chromatography-electroantennogram analyses. In field bioassays, significant numbers of males were collected by traps baited with this compound. The pheromone represents a new structural class of cerambycid pheromones, and is the first pheromone identified for a cerambycid species in the subfamily Lepturinae.  相似文献   

3.
To date, all known or suspected pheromones of click beetles (Coleoptera: Elateridae) have been identified solely from species native to Europe and Asia; reports of identifications from North American species dating from the 1970s have since proven to be incorrect. While conducting bioassays of pheromones of a longhorned beetle (Coleoptera: Cerambycidae), we serendipitously discovered that males of Cardiophorus tenebrosus L. and Cardiophorus edwardsi Horn were specifically attracted to the cerambycid pheromone fuscumol acetate, (E)-6,10-dimethylundeca-5,9-dien-2-yl acetate, suggesting that this compound might also be a sex pheromone for the two Cardiophorus species. Further field bioassays and electrophysiological assays with the enantiomers of fuscumol acetate determined that males were specifically attracted by the (R)-enantiomer. However, subsequent analyses of extracts of volatiles from female C. tenebrosus and C. edwardsi showed that the females actually produced a different compound, which was identified as (3R,6E)-3,7,11-trimethyl-6,10-dodecadienoic acid methyl ester (methyl (3R,6E)-2,3-dihydrofarnesoate). In field trials, both the racemate and the (R)-enantiomer of the pheromone attracted similar numbers of male beetles, suggesting that the (S)-enantiomer was not interfering with responses to the insect-produced (R)-enantiomer. This report constitutes the first conclusive identification of sex pheromones for any North American click beetle species. Possible reasons for the strong and specific attraction of males to fuscumol acetate, which is markedly different in structure to the actual pheromone, are discussed.  相似文献   

4.
Adults of both sexes of the cerambycid beetles Xylotrechus colonus (F.) and Sarosesthes fulminans (F.) were attracted to odors produced by male conspecifics in olfactometer bioassays. Analyses of headspace volatiles from adults revealed that male X. colonus produced a blend of (R)- and (S)-3-hydroxyhexan-2-one and (2 S,3 S)- and (2R,3R)-2,3-hexanediol, whereas male S. fulminans produced (R)-3-hydroxyhexan-2-one and (2 S,3R)-2,3-hexanediol. All of these compounds were absent in the headspace of females. Two field bioassays were conducted to confirm the biological activity of the synthesized pheromones: (1) enantiomerically enriched pheromone components were tested singly and in species-specific blends and (2) four-component mixture of racemic 3-hydroxyhexan-2-one plus racemic 2-hydroxyhexan-3-one and the four-component blend of the stereoisomers of 2,3-hexanediols were tested separately and as a combined eight-component blend. In these experiments, adult male and female X. colonus were captured in greatest numbers in traps baited with the reconstructed blend of components produced by males, although significant numbers were also captured in traps baited with (R)-3-hydroxyhexan-2-one alone or in blends with other compounds. Too few adult S. fulminans were captured for a statistical comparison among treatments, but all were caught in traps baited with lures containing (R)-3-hydroxyhexan-2-one. In addition to these two species, adults of two other species of cerambycid beetles, for which pheromones had previously been identified, were caught: Neoclytus a. acuminatus (F.) and its congener Neoclytus m. mucronatus (F.). Cross-attraction of beetles to pheromone blends of other species, and to individual pheromone components that are shared by two or more sympatric species, may facilitate location of larval hosts by species that compete for the same host species.  相似文献   

5.
Females of the large cerambycid beetle Prionus californicus produce a powerful sex pheromone that attracts males. The pheromone was adsorbed on solid phase microextraction (SPME) fibers inserted into the ovipositor sheath and analyzed by coupled gas chromatography-electroantennogram detection and GC-mass spectrometry. The pheromone was identified as an isomer of 3,5-dimethyldodecanoic acid by a combination of retention index comparisons and mass spectral interpretation. The mass spectrum was misleading because it exhibited enlarged fragment ions that were not representative of branch points or other obvious stabilizing structural elements. The structure was verified by synthesis of 3,5-dimethyldodecanoic acid as a mixture of all four possible isomers, and this mixture was highly attractive to male beetles in field bioassays. The SPME extracts also contained several other compounds that were tentatively identified as chain-extended homologs of the main pheromone component. This pheromone should prove useful for sampling and management of the beetle, which is an important pest of hops, and an occasional pest in a variety of orchard crops. Although this is the first female-produced pheromone to be identified from the Cerambycidae, there is considerable evidence for pheromone production by females of other species in the subfamily Prioninae. Thus, this pheromone and the associated methodology used in its identification should be useful in the identification of female-produced attractant pheromones from other members of the subfamily. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

6.
We determined the site of pheromone production tissues and a partial route for the biosynthesis of the sex pheromone in Hedypathes betulinus (Coleoptera: Cerambycidae: Lamiinae), Brazil’s main green maté pest. Pheromone was found predominantly in the prothorax of males, suggesting that this is the region of production of pheromones in this insect. Scanning electron microscopy revealed small pores that may be associated with pheromone release in males; these pores also were observed in females. A deuterium-labeled putative precursor (geranyl acetone-D5) of the sex pheromone of H. betulinus was synthesized. When applied to the prothorax of males, label from the precursor was incorporated into the pheromone components, confirming that pheromone production occurs in the prothorax and that the pheromone components are biosynthesized from geranyl acetone.  相似文献   

7.
The major component of the female-produced sex pheromone of Scoliopteryx libatrix has been characterized by chemical analysis, synthesis, electrophysiological studies and field tests as (6Z,13)-methylheneicosene, probably the 13S-isomer. This is the first example of a branched chain alkene as a sex pheromone in the Noctuidae and is markedly different from the pheromones of other members of the family. The systematic position of S. libatrix, belonging to a monotypic genus of a one-member subfamily within the Noctuidae, may reflect the unusual structure of the sex pheromone.  相似文献   

8.
This is the first fully verified report of an aggregation pheromone produced by a cerambycid beetle species. Field bioassays with adult Neoclytus acuminatus acuminatus (F.) (Coleoptera: Cerambycidae) revealed that males produce a pheromone that attracts both sexes. Extracts of odors from males contained a single major male-specific compound, (2S,3S)-hexanediol. Field trials determined that both sexes were attracted by the racemic blend of (2S,3S)- and (2R,3R)-hexanediols and that activity was similar to enantiomerically enriched (2S,3S)-hexanediol (e.e. 80.2%). However, the blend of all four 2,3-hexanediol stereoisomers attracted few beetles, indicating inhibition by one or both of the (2R*,3S*)-stereoisomers. Females of the cerambycid Curius dentatus Newman were attracted to traps baited with the four component blend, suggesting that a male-produced sex pheromone for this species may contain (2R,3S)-hexanediol and/or (2S,3R)-hexanediol. The pheromone of N. a. acuminatus, and presumed pheromone of C. dentatus, bear structural similarities to those produced by males of six other species in the Cerambycinae (straight chains of 6, 8, or 10 carbons with hydroxyl or carbonyl groups at C2 and C3). It is likely that males of other species in this large subfamily produce pheromones that are variations on this structural motif.  相似文献   

9.
During field screening trials conducted in Brazil in 2015, adults of both sexes of the cerambycid beetles Cotyclytus curvatus (Germar) and Megacyllene acuta (Germar) (subfamily Cerambycinae, tribe Clytini) were significantly attracted to racemic 3-hydroxyhexan-2-one and racemic 2-methylbutan-1-ol, chemicals which previously have been identified as male-produced aggregation-sex pheromones of a number of cerambycid species endemic to other continents. Subsequent analyses of samples of beetle-produced volatiles revealed that males of C. curvatus sex-specifically produce only (R)-3-hydroxyhexan-2-one, whereas males of M. acuta produce the same compound along with lesser amounts of (2S,3S)-2,3-hexanediol and (S)-2-methylbutan-1-ol. Follow-up field trials showed that both sexes of both species were attracted to synthetic reconstructions of their respective pheromones, confirming that males produce aggregation-sex pheromones. The minor pheromone components of M. acuta, (S)-2-methylbutan-1-ol and (2S,3S)-2,3-hexanediol, synergized attraction of that species, but antagonized attraction of C. curvatus to (R)-3-hydroxyhexan-2-one. Beetles of other cerambycine species also were attracted in significant numbers, including Chrysoprasis linearis Bates, Cotyclytus dorsalis (Laporte & Gory), and Megacyllene falsa (Chevrolat). Our results provide further evidence that 3-hydroxyhexan-2-one is a major component of attractant pheromones of numerous cerambycine species world-wide. Our results also highlight our increasing understanding of the crucial role of minor pheromone components in imparting species specificity to cerambycid pheromone blends, as is known to occur in numerous species in other insect families.  相似文献   

10.
The response of the two eulophid egg parasitoid species Chrysonotomyia ruforum and Dipriocampe diprioni to sex pheromones of their sawfly hosts Diprion pini and Neodiprion sertifer was studied in olfactometer bioassays. Females of C. ruforum were arrested when exposed to odor of the tested major sex pheromone components of Diprion pini [acetate and propionate of (2S,3R,7R)-3,7–dimethyl-2–tridecanol] or Neodiprion sertifer [(2S,3S,7S)-3,7–dimethyl-2–pentadecyl acetate]. This behavioral response of C. ruforum was observed whether (1) parasitoid females had oviposition experience with D. pini eggs or not, (2) parasitoid females emerged from D. pini eggs of a French population or from N. sertifer eggs of a Finnish population, and (3) the tested sex pheromone concentration was low (1 ng/l hexane) or high (100 ng/l hexane). However, C. ruforum did not behaviorally respond to a stereoisomer of the major sex pheromone component of N. sertifer, which is known to act as a sex pheromone antagonist [antagonist = (2S,3R,7R)-3,7–dimethyl-2–pentadecyl acetate]. Thus, C. ruforum responded stereospecifically to the S,S,S configured pheromone of N. sertifer, but not to the S,R,R configuration. Females of the parasitoid D. diprioni were also arrested by the tested major sex pheromone components of the host D. pini. The kairomonal effects of diprionid host sex pheromones on these egg parasitoids are compared to known responses of egg parasitoids to lepidopteran sex pheromones.  相似文献   

11.
We previously identified the basic structure of the female-produced sex attractant pheromone of the cerambycid beetle, Prionus californicus Motschulsky (Cerambycidae: Prioninae), as 3,5-dimethyldodecanoic acid. A synthesized mixture of the four stereoisomers of 3,5-dimethyldodecanoic acid was highly attractive to male beetles. Here, we describe stereoselective syntheses of three of the four possible stereoisomers, and the results of laboratory and field bioassays showing that male beetles are attracted specifically to (3R,5S)-3,5-dimethyldodecanoic acid, but not to its enantiomer, (3S,5R)-3,5-dimethyldodecanoic acid, indicating that the (3R,5S)-enantiomer is the active pheromone component. The diastereomeric (3R,5R)- and (3S,5S)-enantiomers were excluded from consideration because their gas chromatographic retention times were different from that of the insect-produced compound. The mixture of the four stereoisomers of 3,5-dimethyldodecanoic acid was as attractive to male P. californicus as the (3R,5S)-enantiomer, indicating that none of the other three stereoisomers inhibited responses to the active enantiomer. Beetles responded to as little as 10 ng and 10 μg of synthetic 3,5-dimethyldodecanoic acid in laboratory and field studies, respectively. Field studies indicated that capture rate did not increase with dosages of 3,5-dimethyldodecanoic acid greater than 100 μg. In field bioassays, males of a congeneric species, P. lecontei Lameere, were captured in southern California but not in Idaho.  相似文献   

12.
Homologs of bombykal, (10E,12Z)-10,12-hexadecadienal, have been reported to be sex pheromones or sexual attractants of several species of sphingid moths. In this study, we identified novel bombykal analogs as sex pheromone components from a Japanese sphingid moth, Dolbina tancrei. Staudinger (Sphingidae: Lepidoptera). Sex pheromone gland extracts from calling female moths were subjected to gas chromatography/electroantennograhic detection (GC/EAD), gas chromatography/mass spectrometry (GC/MS), and gas chromatography (GC) analyses. GC/EAD analyses showed two active components in the crude pheromone extracts. GC/MS analysis determined these two components to be pentadecadienals. GC/MS of their MTAD derivatives showed conjugated double bonds at the 9- and 11-positions, indicating 9,11-pentadecadienals. The isomeric configurations of these candidates were determined by comparison of their Kováts retention indices with those of synthetic compounds. Field bioassays with the four isomers of 9,11-pentadecadienal and their mixtures confirmed that the two sex pheromone components of D. tancrei are (9E,11Z)-9,11-pentadecadienal and (9Z,11Z)-9,11-pentadecadienal, with the highest male catches observed for a 90:10 blend. This is the first report of 9,11-pentadecadienals as sex pheromone components in lepidopteran species.  相似文献   

13.
A female-produced sex pheromone of Stylops muelleri was identified as an unusually branched saturated aldehyde (9R)-3,5-syn-3,5,9-trimethyldodecanal. We named it stylopsal. Its structure was established by using mass spectrometry, infrared spectroscopy, and organic synthesis of candidate compounds. The synthetic standard of (9R)-3,5-syn-3,5,9-trimethyldodecanal gave identical chromatographic and mass spectrometric data as the natural pheromone and also was active in electroantennographic and behavioral assays. The female fat body lipids contained the corresponding fatty acid, indicating a possible link between lipid metabolism and the pheromone biosynthesis.  相似文献   

14.
Research over the last decade has revealed extensive parsimony among pheromones within the large insect family Cerambycidae, with males of many species producing the same, or very similar aggregation pheromones. Among some species in the subfamily Cerambycinae, interspecific attraction is minimized by temporal segregation, and/or by minor pheromone components that synergize attraction of conspecifics or inhibit attraction of heterospecifics. Less is known about pheromone-based mechanisms of reproductive isolation among species in the largest subfamily, the Lamiinae. Here, we present evidence that the pheromone systems of two sympatric lamiine species consist of synergistic blends of enantiomers of (E)-6,10-dimethyl-5,9-undecadien-2-ol (fuscumol) and the structurally related (E)-6,10-dimethyl-5,9-undecadien-2-yl acetate (fuscumol acetate), as a mechanism by which species-specific blends of pheromone components can minimize interspecific attraction. Male Astylidius parvus (LeConte) were found to produce (R)- and (S)-fuscumol + (R)-fuscumol acetate + geranylacetone, whereas males of Lepturges angulatus (LeConte) produced (R)- and (S)-fuscumol acetate + geranylacetone. Field experiments confirmed that adult beetles were attracted only by their species-specific blend of the enantiomers of fuscumol and fuscumol acetate, respectively, and not to the individual enantiomers. Because other lamiine species are known to produce single enantiomers or blends of enantiomers of fuscumol and/or fuscumol acetate, synergism between enantiomers, or inhibition by enantiomers, may be a widespread mechanism for forming species-specific pheromone blends in this subfamily.  相似文献   

15.
Callosobruchus rhodesianus (Pic) (Coleoptera: Chrysomelidae: Bruchinae) is a pest of stored legumes through the Afro-tropical region. In laboratory bioassays, males of C. rhodesianus were attracted to volatiles collected from virgin females. Collections were purified by various chromatographic techniques, and the biologically active component isolated using gas chromatographic-electroantennographic detection analysis. Gas chromatography-mass spectrometry and NMR analyses suggested that the active compound was 2,3-dihydrohomofarnesal, i.e., 7-ethyl-3,11-dimethyl-6,10-dodecadienal. The structure was confirmed by non-stereoselective and enantioselective total synthesis. Using chiral gas chromatography, the absolute configuration of the natural compound was confirmed as (3S,6E)-7-ethyl-3,11-dimethyl-6,10-dodecadienal. Y-tube olfactomter assays showed that only the (S)-enantiomer attracted males of C. rhodesianus. The (R)-enantiomer and racemate did not attract males, suggesting that the (R)-enantiomer inhibits the activity of the natural compound. In combination with previous reports about sex attractant pheromones of congeners, we suggest that a saltational shift of the pheromone structure arose within the genus Callosobruchus.  相似文献   

16.
Archips atrolucens, Adoxophyes privatana, and Homona sp. are serious defoliators of citrus trees in the Mekong Delta of Vietnam. In order to establish a sustainable pest-management program for the three species, their female-produced sex pheromones were investigated by GC-EAD and GC-MS analyses, and the following multi-component pheromones were identified: (Z)-11-tetradecenyl acetate (Z11-14:OAc), (E)-11-tetradecenyl acetate (E11-14:OAc), and tetradecyl acetate (14:OAc) in a ratio of 64:32:4 for A. atrolucens; Z11-14:OAc and (Z)-9-tetradecenyl acetate (Z9-14:OAc) in a ratio of 92:8 for A. privatana; and Z11-14:OAc and (Z)-9-dodecenyl acetate (Z9-12:OAc) in a ratio of 96:4 for Homona sp. Each lure baited with synthetic components as a mimic of the natural pheromone attracted males of the target species specifically, indicating that each monounsaturated minor component plays a significant role for mating communication and reproductive isolation of the three species inhabiting the same citrus orchards. In an extract of the pheromone glands of A. atrolucens females, the content of 14:OAc was very low, but a synergistic effect was observed clearly when the saturated compound was mixed at the same level as the E11-14:OAc. The synthetic lures will provide useful tools for monitoring flights of adults of the three species.  相似文献   

17.
(R)-Solanone was identified as a female-specific compound from aerations of virgin females of the scale insect, Aulacaspis murrayae Takahashi. The stereochemistry of the insect-produced solanone was confirmed to be (R) by comparison with synthesized racemic and chiral standards on a chiral stationary phase GC column. In bioassays, males were strongly attracted to a synthesized sample of (R)-solanone, demonstrating that this compound is a sex pheromone component for this species.  相似文献   

18.
Males of several species of longhorned beetles in the subfamily Cerambycinae produce sex or aggregation pheromones consisting of 2,3-hexanediols and/or hydroxyhexanones. We tested the hypothesis that this diol/hydroxyketone pheromone motif is highly conserved within the subfamily, and the resulting prediction that multiple cerambycine species will be attracted to compounds of this type. We also tested the concept that live traps baited with generic blends of these compounds could be used as a source of live insects from which pheromones could be collected and identified. Traps placed in a mature oak woodland and baited with generic blends of racemic 2-hydroxyhexan-3-one and 3-hydroxyhexan-2-one captured adults of both sexes of three cerambycine species: Xylotrechus nauticus (Mannerheim), Phymatodes lecontei Linsley, and Phymatodes decussatus decussatus (LeConte). Odors collected from male X. nauticus contained a 9:1 ratio of two male-specific compounds, (R)- and (S)-3-hydroxyhexan-2-one. Field trials with synthetic compounds determined that traps baited with (R)-3-hydroxyhexan-2-one (94% ee), alone or in blends with other isomers, attracted similar numbers of X. nauticus of both sexes, whereas (S)-3-hydroxyhexan-2-one (94% ee) attracted significantly fewer beetles. Phymatodes lecontei and P. d. decussatus also were caught in traps baited with hydroxyhexanones, as well as a few specimens of two other cerambycine species, Neoclytus modestus modestus Fall (both sexes) and Brothylus gemmulatus LeConte (only females). Male N. m. modestus produced (R)-3-hydroxyhexan-2-one, which was not present in extracts from females. Neoclytus m. modestus of both sexes also responded to lures that included (R)-3-hydroxyhexan-2-one as one of the components. The only male-specific compound found in extracts from P. lecontei was (R)-2-methylbutan-1-ol, and adults of both sexes were attracted to racemic 2-methylbutan-1-ol in field bioassays. Surprisingly, P. lecontei of both sexes also were attracted to (R)- and (S)-3-hydroxyhexan-2-ones, although neither compound was detected in extracts from this species. Males of all five beetle species had gland pores on their prothoraces that were similar in structure to those that have been associated with volatile pheromone production in other cerambycine species. The attraction of multiple cerambycine species of two tribes to (R)-3-hydroxyhexan-2-one in this study, and in earlier studies with other cerambycine species, suggests that this compound is a widespread aggregation pheromone component in this large and diverse subfamily. Overall, the attraction of multiple species from different cerambycine tribes to this compound at a single field site supports the hypothesis that the hydroxyketone pheromone structural motif is highly conserved within this subfamily.  相似文献   

19.
Research since 2004 has shown that the use of volatile attractants and pheromones is widespread in the large beetle family Cerambycidae, with pheromones now identified from more than 100 species, and likely pheromones for many more. The pheromones identified to date from species in the subfamilies Cerambycinae, Spondylidinae, and Lamiinae are all male-produced aggregation-sex pheromones that attract both sexes, whereas all known examples for species in the subfamilies Prioninae and Lepturinae are female-produced sex pheromones that attract only males. Here, we summarize the chemistry of the known pheromones, and the optimal methods for their collection, analysis, and synthesis. Attraction of cerambycids to host plant volatiles, interactions between their pheromones and host plant volatiles, and the implications of pheromone chemistry for invasion biology are discussed. We also describe optimized traps, lures, and operational parameters for practical applications of the pheromones in detection, sampling, and management of cerambycids.  相似文献   

20.
Sex pheromone of the San Jose scale   总被引:1,自引:0,他引:1  
The sex pheromone of the San Jose scale,Quadraspidiotus perniciosus (Comstock), was isolated from airborne collections on Porapak Q. Two components, present in approximately equal amounts, were identified as (Z)-3,7-dimethyl-2,7-octadien-1-yl propanoate and 3-methylene-7-methyl-7-octen-1-yl propanoate. Greenhouse bioassays and field tests have shown that the compounds are independently attractive to male San Jose scale. These structures are compared with those of other known scale pheromones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号