共查询到18条相似文献,搜索用时 90 毫秒
1.
2.
一种基于改进重采样的粒子滤波算法 总被引:2,自引:0,他引:2
针对传统粒子滤波算法中存在的样本贫化问题,提出一种基于改进重采样的粒子滤波算法。为了验证算法的有效性,对机动目标跟踪和分时恒值估计两类问题进行了仿真。结果表明,所提出的算法能够解决样本贫化问题,且具有较小的估计误差和较短的运算耗时。 相似文献
3.
4.
基于硬件实现的粒子滤波重采样算法研究 总被引:1,自引:0,他引:1
粒子滤波算法用于硬件实现是目前一个新的研究方向,传统的粒子滤波算法计算量大,所需存储空间大,实时性差,所以在硬件实现方面面临着极大的挑战。为使算法更加适合于硬件实现,以粒子滤波中的重采样步骤为研究重点,以典型的序贯重要性重采样滤波算法为例,对典型的几种重采样算法的复杂度、所需存储空间及执行时间上进行分析研究,并在TI DSPTMS320C5402上对采样算法进行仿真,结果表明部分重采样算法(PDR)更适合于硬件实现。 相似文献
5.
粒子滤波算法由于其处理非线性非高斯的能力优势,目前应用领域非常广泛。然而粒子滤波中存在的粒子退化、样贫等问题同样不容忽视,针对这些问题提出了一种改进的重采样粒子滤波算法。该方法借鉴了部分分层重采样和残差重采样的思路,通过对粒子权值大中小分类,在兼顾粒子多样性的情况下用不同策略分层次复制三个集合样本,从而优化了重采样算法。最后通过与经典粒子滤波重采样算法和其他部分重采样(PR)算法相比,以一维非线性跟踪模(UNG)和二维纯角度跟踪模型(BOT)两个模型的仿真结果验证了所提算法的滤波性能和有效性。 相似文献
6.
7.
8.
针对标准粒子群优化(PSO)算法在求解过程中存在求解精度低、搜索后期收敛速度慢等问题,提出一种基于粒子滤波重采样步骤与变异操作相结合的改进PSO算法——RSPSO。该算法充分利用重采样中具有较大权值的粒子被保留和复制、较小权值的粒子被舍弃的特点,并利用已有的变异操作方法克服粒子匮乏的缺点,大大增强了PSO算法中后期搜索阶段的局部搜索能力。在不同基准函数下对RSPSO算法和标准PSO算法以及文献中其他改进算法进行对比。实验结果表明, RSPSO算法的收敛速度较快,同时其搜索精度和解的稳定性均有所提高,且能够全局地解决多峰问题。 相似文献
9.
基于目标跟踪的粒子滤波重采样算法研究 总被引:3,自引:0,他引:3
传统粒子滤波(PF)中,重采样步骤里存在着粒子的"平均化"现象,导致粒子本身概率大小的因素被忽略,没有充分利用粒子集所包含的信息。通过改进抛弃小权值粒子的原则,以及充分利用粒子权值大小所代表的意义来进行粒子复制的两点进行算法改进,采用一维非线性目标跟踪模型和新的二维动态跟踪模型分别研究改进PF算法对于平均RMSE的影响。通过仿真,证明了改进后的算法可以显著降低变量的平均RMSE,特别是在二位动态跟踪模型中,使位置坐标和速度两种变量的平均均方根误差(RMSE)都有所改善,从而提高了滤波性能。 相似文献
10.
非线性交互粒子滤波算法 总被引:1,自引:1,他引:1
在非线性非高斯系统状态估计问题中,后验概率密度函数的解析形式难以获得,标准粒子滤波算法采用状态转移概率函数代替后验概率作为重要性采样概率密度函数,而未考虑当前观测数据的影响.针对该问题,首先提出了非线性交互多模型算法;然后应用该算法产生重要性采样概率密度函数,设计了新的非线性交互粒子滤波器.新的概率密度函数融入最新观测数据,更接近系统状态后验概率.比较实验表明了所提出算法的有效性. 相似文献
11.
12.
针对传统粒子滤波算法建议分布函数的选取问题和粒子退化现象,提出一种基于马尔可夫蒙特卡洛思想的改进粒子滤波算法.使用基于比例对称采样方法选取Sigma点的无迹卡尔曼滤波,产生粒子滤波并建议分布函数;将似然分布自适应权值调整策略应用于权值选取步骤;采用系统重采样方法,加入了用来保持粒子多样性的马尔科夫链蒙特卡洛步骤.仿真结果表明,该算法的估计状态能够更好地吻合真实轨迹,在非线性、非高斯场合的估计性能较优. 相似文献
13.
传统高斯粒子滤波算法(Gaussian particle Filter,GPF)中,粒子的重要性密度函数是由高斯滤波器结合当前最新量测来构建的.由于传统高斯滤波器在量测更新阶段直接利用量测对状态进行线性更新,在某些条件下会导致所构建的重要性密度函数并不能很好地近似状态真实分布.为了解决这一问题,结合递推更新的思想,本文推导出了递推更新高斯滤波器(recursive update Gaussian filter,RUGF)的一般结构.并在此基础上,选用RUGF来构建粒子滤波的重要性密度函数,从而提出了基于递推更新的高斯粒子滤波算法(recursive update gaussian particle filter,RUGPF).仿真表明,在非线性系统状态估计问题中,递推更新可以很好的利用量测信息,相比于传统的GPF,本文所提出的RUGPF滤波算法可以提供更高精度的估计结果. 相似文献
14.
小波变换在车辆GPS导航的应用 总被引:2,自引:0,他引:2
在分析车辆GPS导航信号观测粗差、噪声特性的基础上,提出了基于小波变换的车辆GPS导航信号粗差探测及滤波算法.数据仿真表明:该算法能够有效地克服Kalman滤波需要精确数学模型和滤波效果受粗差影响较大的缺点. 相似文献
15.
一种用于解决非线性滤波问题的新型粒子滤波算法 总被引:6,自引:0,他引:6
粒子滤波算法受到许多领域的研究人员的重视,该算法的主要思想是使用一个带有权值的粒子集合来表示系统的后验概率密度.在扩展卡尔曼滤波和Unscented卡尔曼滤波算法的基础上,该文提出一种新型粒子滤波算法.首先用Unscented卡尔曼滤波器产生系统的状态估计,然后用扩展卡尔曼滤波器重复这一过程并产生系统在k时刻的最终状态估计.在实验中,针对非线性程度不同的两种系统,分别采用5种粒子滤波算法进行实验.结果证明,文中所提出的算法的各方面性能都明显优于其他4种粒子滤波算法. 相似文献
16.
17.
针对采用单一特征建立的动态空间模型与实际系统差距较大,从而使估计误差增加的问题,通过将系统的状态参数引入颜色特征模型中,与颜色特征参数一起构成系统状态空间向量,提出了一种联合颜色状态特征的优化目标跟踪算法.应用Rao-Blackwellization算法思想,由Kalman线性滤波方法解析处理线性的颜色特征转移和更新过程;而目标位置参数采用粒子滤波进行估计,提高了视频目标跟踪的精度和实时性.通过与其他相似算法的比较实验结果可以看出,算法在环境亮度发生变化、目标遮挡等情况下,仍能够保持较高的跟踪精度,既提高了跟踪系统的鲁棒性,又保证了算法的实时性,优于传统的单一特征视频跟踪算法. 相似文献
18.
熊炳忠 《计算机工程与应用》2015,51(13):225-229
提出辅助增量粒子滤波方法并给出其算法过程。该方法将增量形式融入辅助变量粒子滤波中,解决由于工程实际中量测可能存在未知系统误差导致无法精确建立量测似然函数的问题,另一方面,其又能保持辅助变量粒子滤波方法的优势,在选取重要性密度函数上有效利用最新观测的信息。该方法能减少重采样次数,较好保持粒子的多样性,使得非线性滤波的精度得以提高。仿真实验结果表明,辅助增量粒子滤波方法能有效减少非线性滤波问题的误差,相对经典滤波方法的滤波精度提高了50%。 相似文献