首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Silicon nitride (94.5% α, 5.5% β), BaCO3, Al2O3, and SiO2 powders were mixed and pressureless sintered to produce a ceramic matrix composite consisting of 30 vol% barium aluminosilicate (BaO·Al2O3·2SiO2 or BAS) matrix reinforced with in situ grown whiskers of β-Si3N4. In situ X-ray studies of the reactions indicated that BaCO3 decomposes first to yield BaO which reacts with SiO2 to yield a series of barium silicates which then react with Al2O3 between 950 and 1300°C to yield hexacelsian BAS. The sintering times were varied in order to develop a material system that combines the favourable properties of BAS with the high strength of Si3N4. In situ high-temperature X-ray studies after composite processing did not reveal any changes in the BAS or Si3N4 up to temperatures of 1300°C. Dilatometry studies of the sintered composite indicated a low-temperature transformation between 230 and 260°C with the temperature of transformation and volume change associated with the hexagonal to orthorhombic transformation decreasing with an increase of sintering time. Room- and high-temperature (1400°C) strengths were evaluated using four-point bend flexural tests. Composites exhibited near theoretical densities and an increase in flexural strength that was primarily dependent on the higher α- to β-Si3N4 transformation. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

2.
Si3N4-ZrO2 composites have been prepared by hot isostatic pressing at 1550 and 1750 °C, using both unstabilized ZrO2 and ZrO2 stabilized with 3 mol% Y2O3. The composites were formed with a zirconia addition of 0, 5, 10, 15 and 20 wt%, with respect to the silicon nitride, together with 0–4 wt% Al2O3 and 0–6 wt% Y2O3. Composites prepared at 1550 °C contained substantial amounts of unreacted -Si3N4, and full density was achieved only when 1 wt% Al2O3 or 4 wt % Y2O3 had been added. These materials were generally harder and more brittle than those densified at the higher temperature. When the ZrO2 starting powder was stabilized by Y2O3, fully dense Si3N4-ZrO2 composites could be prepared at 1750 °C even without other oxide additives. Densification at 1750 °C resulted in the highest fracture toughness values. Several groups of materials densified at 1750 °C showed a good combination of Vickers hardness (HV10) and indentation fracture toughness; around 1450 kg mm–2 and 4.5 MPam1/2, respectively. Examples of such materials were either Si3N4 formed with an addition of 2–6 wt% Y2O3 or Si3N4-ZrO2 composites with a simultaneous addition of 2–6 wt%Y2O3 and 2–4 wt% Al2O3.  相似文献   

3.
The effect of TiO2 content on the oxidation of sintered bodies from the conventional Si3N4-Y2O3-Al2O3-AlN system was investigated. Sintered specimens composed of Si3N4, Y2O3, Al2O3, and AlN, with a ratio of 100 : 5 : 3 : 3 wt% and containing TiO2 in the range of 0 to 5 wt% to Si3N4, were fabricated at 1775 °C for 4 h at 0.5 MPa of N2. Oxidation at 1200 to 1400 °C for a maximum of 100 h was performed in atmospheres of dry and wet air flows. The relation between weight gain and oxidation time was confirmed to obey the parabolic law. The activation energies decreased with TiO2 content. In the phases present in the specimens oxidized at 1300 °C for 100 h in dry air, Y3Al5O12 and TiN, which had existed before oxidation, disappeared. Alpha-cristobalite and Y2O3·2TiO2 (Y2T) appeared in their place and increased with increasing TiO2 content. In those oxidized at 1400 °C, -cristobalite was dominant and very small amounts of Y2O3·2SiO2 and Y2T were contained. There was a tendency for more -cristobalite to form in oxidation in wet air than in dry air. Therefore, moisture was confirmed to affect the crystallization of SiO2 formed during oxidation. Judging from the lower activation energy, the crystallization, and the pores formation, we concluded that the addition of TiO2 decreases oxidation resistance.  相似文献   

4.
When pressureless sintered silicon nitride with the main additives Y2O3 and Al2O3, having a thermal conductivity K = 20 W/m K, was oxidized at 1240–1360 °C in still air, the resulting surface oxide layer easily bonded to a copper plate in the temperature region between 1065 and 1083 °C, and in the oxygen concentration range of 0.008–0.39 wt%, as shown in a Cu–O phase diagram. The oxide on the silicon nitride was characterized as Y2O3·2SiO2 and mixed silicate glass with additives and impurities that diffused through the grain boundary. The bonding strength of Cu/Si3N4 depends on the amount or layer thickness of silicate glass and reaches as high as 100 MPa by shear at room temperature. Detailed analysis of the oxidation layer and the peeled-off surfaces of directly bonded Si3N4/Cu reveal that the main mechanism of bonding is wetting to glassy silicate phase by mixtures of molten Cu and α-solid solution Cu(O), which solidify to α + Cu2O below 1065 °C by a eutectic reaction. The direct reactive wetting of molten Cu, supplied from the grain boundary of a Cu plate, on the glassy phase enables very tight chemical bonding via oxygen atoms.  相似文献   

5.
The effect of oxide addition on the sintering behaviour and high-temperature strength of Si3N4 containing Y2O3 was studied at 0.1 to 30 MPa N2 at 1600 to 2000° C. The addition of oxide, i.e. MgO, Al2O3, La2O3, or Nd2O3, was found to lower the densification temperature and increase the densification rate. The addition of Al2O3 or MgO reduced the strength of sintered materials at >1350° C. The addition of La2O3 or Nd2O3, on the other hand, did not affect high-temperature strength which remained equivalent to that of the material containing only Y2O3. These results indicate that the glassy phases in these systems are as refractory as that in the Si3N4-Y2O3.  相似文献   

6.
Abstract

Porous Si3N4–BN–SiO2 ceramics with ultimate apparent porosities between 0·140 and 0·799 were fabricated in air at 1100°C by partial sintering using core starch as both consolidator and pore former in the green bodies. The pores were derived from burning off the starch, the partial oxidation of silicon nitride and the stack of particles of the start materials. Effect of retaining time on the microstructure of sintering bodies was analysed by SEM analysis. Reference intensity ratio (RIR) technique based on the X-ray diffractometry results demonstrated the phase components content of sintered bodies. Influence of porosity on the flexural strength of porous Si3N4–BN–SiO2 ceramics was investigated. The ceramic with a porosity of 0·140 attained a maximal flexural strength of 60±4·11 MPa. In addition, the dielectric constants and loss tangents were presented for porous Si3N4–BN–SiO2 triphase ceramics in the frequency range of 18–40 GHz, and the real part of dielectric constant of the materials reached as low as 2·67 at the porosity of 0·732 at a frequency of 20 GHz.  相似文献   

7.
《Composites Part A》1999,30(8):945-950
Self-reinforced in situ Si3N4 composite material was prepared with high amount of La2O3 and Y2O3 additives by two-step hot pressing, and the optimum amount of additives was determined. The volume fraction of boundary glass phase was calculated based on the equilibrium of equivalent number in chemical reaction. For material with 15 mol% additives, flexural strength and fracture toughness at room temperature were 960 MPa and 12.3 MPa m1/2, respectively. At temperature of 1350°C, flexural strength was maintained to 720 MPa and fracture toughness was significantly increased to 23.9 MPa m1/2 because of the high refractory of oxynitride glass containing compositions of La and Y. Self-reinforced mechanism was mainly responsible for crack deflection along the elongated β-Si3N4 grains.  相似文献   

8.
Evaluation of Si3N4 joints: bond strength and microstructure   总被引:2,自引:0,他引:2  
Joining of pressurelessly sintered silicon nitride ceramics was carried out using adhesive slurries in the system Y-Si-Al-O-N in a nitriding atmosphere. The effects of bonding parameters, such as joining temperature (1450–1650°C), applied pressure (0– MPa) and holding time (10–60 min), on the bond strength of joint were evaluated. A typical microstructure of the joint bonded with the optimum adhesive was investigated. The three point bend testing of joined samples with 3 × 4 × 36 mm3 in dimension was employed to study the bond strength of joints. The results show that an optimum joining process was achieved by holding at 1600°C for 30 min under an external pressure of 5 MPa and the maximum bond strength was 550 MPa, compared to 700 MPa of unbonded Si3N4 ceramic, using the adhesive having the Si3N4/(Y2O3 + SiO2 + Al2O3) ratio of 0.39. The good bond strength is attributed to the similarity in microstructure and chemical composition between joint zone and ceramic substrate. The fracture modes were classified into two types according to the values of bond strength. This revised version was published online in September 2006 with corrections to the Cover Date.  相似文献   

9.
The influence of oxidation at 1200 °C in air for up to 1000 h on the mechanical properties of two Si3N4-Y2O3-Al2O3 materials with different Y2O3/Al2O3 ratios, Material A (Si3N4-13.9 wt% Y2O3-4.5 wt% Al2O3) and Material B (Si3N4-6.0 wt% Y2O3-12.4 wt% Al2O3), was investigated. The oxidation significantly improves the high-temperature strength and fracture toughness of both materials, but more for Material A. After oxidation, Material A at 1300 °C retains 93% of its room-temperature strength and 87% higher than that before the oxidation. The oxidation has a different effect on the room-temperature K IC for the two materials. The room-temperature Weibull modulus of Material A decreased by more than half while the 1200 °C Weibull modulus decreased slightly after oxidation. The annealing treatment prior to oxidation had no effect on the high-temperature strengths of the materials after oxidation. The effect of oxidation on mechanical properties is discussed in terms of the microstructure change of the materials.  相似文献   

10.
The mechanical behaviour from room temperature up to 1400°C (strength, toughness, Young’s modulus) of a 3Al2O3·2SiO2 dense mullite material containing 0.2 wt% alkali has been studied. Microstructure has been characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Toughness, bend strength and static Young’s modulus have been determined from room temperature up to 1400°C. The influence of strain rate on fracture behaviour has been investigated and a correlation of the mechanical parameters to fractographic observations by SEM has been stated. A strong influence of loading rate on microstructural modifications during fracture at 1300°C has been found. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

11.
Yttria-doped zirconia powders containing 3 to 8 mol% Y2O3 and 0 to 20 wt% Al2O3 were prepared by both mixing commercial oxides and a coprecipitation method, and the mechanical and electrical properties have been examined as a function of the Al2O3 content. The bending strength of the composite at room temperature increased with increasing Al2O3 content. In the temperature range 500–1000 °C the bending strength increased with Al2O3 content up to 10 wt% and then decreased, the measured value at 1000 °C (200 MPa) being higher than those at lower temperatures for cubic zirconia materials. Fracture toughness (KIC) decreased with increasing Y2O3 content in the Al2O3-free zirconia materials. Al2O3 additions enhanced the fracture toughness and this was maximum (7 MPa m1/2) for the composite ZrO2-3 mol% Y2O3/10 wt% Al2O3. The electrical conductivity of cubic ZrO2/Al2O3 composites decreased monotonically with Al2O3 content, but in tetragonal ZrO2/Al2O3 composites hardly varied or apparently increased up to 10 wt% Al2O3. At 1000 °C the highest electrical conductivity was 0.30 S cm–1 for ZrO2-8 mol% Y2O3, and this decreased up to 0.10 S cm–1 for the composite ZrO2-8mol% Y2O3/20 wt% Al2O3.  相似文献   

12.
Examination of compositions in the system Si3N4-Y2O3-SiO2 using sintered samples revealed the existence of two regions of melting and three silicon yttrium oxynitride phases. The regions of melting occur at 1600° C at high SiO2 concentrations (13 mol% Si3N4 + 19 mol% Y2O3 + 68 mol% SiO2) and at 1650° C at high Y2O3 concentrations (25 mol % Si3N4 + 75 mol % Y2O3). Two ternary phases 4Y2O3 ·SiO2 ·Si3N4 and 10Y2O3 ·9SiO2 ·Si3N4 and one binary phase Si3N4 ·Y2O3 were observed. The 4Y2O3 ·SiO2 ·Si3N4 phase has a monoclinic structure (a= 11.038 Å, b=10.076 Å, c=7.552 Å, =108° 40) and appears to be isostructural with silicates of the wohlerite cuspidine series. The 10Y2O3 ·9SiO2 ·Si3N4 phase has a hexagonal unit cell (a=7.598 Å c=4.908 Å). Features of the Si3N4-Y2O3-SiO2 systems are discussed in terms of the role of Y2O3 in the hot-pressing of Si3N4, and it is suggested that Y2O3 promotes a liquid-phase sintering process which incorporates dissolution and precipitation of Si3N4 at the solid-liquid interface.Visiting Research Associate at Aerospace Research Laboratories, Wright-Patterson Air Force Base, Ohio 45433, under Contract No. F33615-73-C-4155 when this work was carried out.  相似文献   

13.
Biologically derived hydroxyapatite from calcinated (at 850 °C) bovine bones (BHA) was doped with 5 wt% and 10 wt% of SiO2, MgO, Al2O3 and ZrO2 (stabilized with 8% Y2O3). The aim was to improve the sintering ability and the mechanical properties (compression strength and hardness) of the resultant BHA-composites. Cylindrical samples were sintered at several temperatures between 1,000 and 1,300 °C for 4 h in air. The experimental results showed that sintering generally occurs at 1,200 °C. The BHA–MgO composites showed the best sintering performance. In the BHA–SiO2 composites, extended formation of glassy phase occurred at 1,300 °C, resulting in structural degradation of the resultant samples. No sound reinforcement was achieved in the case of doping with Al2O3 and zirconia probably due to the big gap between the optimum sintering temperatures of BHA and these two oxides.  相似文献   

14.
《Materials Letters》2005,59(2-3):355-360
The Al2O3–ZrO2(Y2O3) composite powder was synthesized through a sol–gel process using aluminum sec-butoxide and zirconium butoxide as precursors. The as-received powders in an amorphous phase were crystallized with c-ZrO2 at around 980 °C. As the calcination temperature increased, the c-ZrO2 crystalline phase was transformed to t-ZrO2 at about 1200 °C. However, the Al2O3 phase in the Al2O3–ZrO2(Y2O3) composite powders still existed in an amorphous phase up to 1050 °C. In the sintered body using the calcined powders at 400 °C, the Al2O3 phase was crystallized in an α-phase at 1200 °C during the sintering for 2 h. Using the sol–gel Al2O3–ZrO2(Y2O3) powder, a typical nano-composite having a nano-crystalline phase (less than 20 nm) can be successfully obtained by a pressureless-sintering process even at 1200 °C for 2 h.Using the sol–gel Al2O3–ZrO2(Y2O3) powder, a typical nano-composite having a nano-crystalline phase (less than 20 nm) can be successfully obtained by a pressureless-sintering process even at 1200 °C for 2 h. The values of relative density and Vickers hardness were comparatively high value with about 96.2% and 1100 Hv, respectively, even though it was made at low temperature. In the composite sintered at 1400 °C, the hardness value was saturated with 1570 Hv and the values of fracture toughness were almost same with about 6 MPa m1/2.  相似文献   

15.
Si3N4 specimens having the composition 88.7 wt% Si3N4-4.9wt% SiO2-6.4wt% Y2O3 (85.1 mol% Si3N4-11.1 mol% SiO2-3.8mol% Y2O3) were sintered at 2140° C under 25 atm N2 for 1 h and then subjected to a 5 h anneal at 1500° C. Crystallization of an amorphous grainboundary phase resulted in the formation of Y2Si2O7. The short-time 1370° C strength of this material was compared with that of material of the same composition having no annealing treatment. No change in strength was noted. This is attributed to the refractory nature of the yttrium-rich grain-boundary phase (apparently identical in both glassy and crystalline phases) and the subsequent domination of the failure process by common processing flaws.Chemical analysis of the medium indicated 5.25 wt% O2, 0.46 wt% C, 0.8 wt% Al, and expressed in p.p.m. 670 Ca, 30 Cu, 2000 Fe, <2 Ti, 370 Cr, 130 Mg, 90 Mn, <10 V, <20 Zr, 2000 Mo, 240 Ni, 130 Zn, <30 Pb, <60 Sn.  相似文献   

16.
Hexagonal plate-like Al4Si2C5 particles were synthesized for the first time via a carbothermal reduction process with controlled heating temperature and raw materials ratio, and their oxidation behavior was investigated. Al4O4C, Al2OC, SiC and Al4SiC4 formed as intermediate products when the batch mixture was heated in argon atmosphere, and Al4Si2C5 then formed at above 1800 °C. Possible reaction mechanisms responsible for the formation of this ternary carbide were discussed based on the reactions at the initial and later stages of the carbothermal reduction process. Al4Si2C5 added to the Al2O3–C refractory initially reacts with CO to form Al2O3, SiO2 and C. After the reaction, Al2O3 react with SiO2 to form mullite on the surfaces of the refractories, which inhibit the oxidation of the refractories.  相似文献   

17.
Si3N4‐Al2O3‐Y2O3, Si3N4‐TiN and Si3N4‐AIN‐Al2O3‐Y2O3 (β‐sialon) nanopowders with the specific surface area of 60–70 m2/g and average particle size of 30–50 nm have been prepared by plasmachemical synthesis. By means of the hot pressing method at 1850°C compact materials with fine‐grained structure were prepared from this powders as well as from mixture of Si3N4‐Al2O3‐Y2O3 with the second phase (10 wt.% SiC‐Si3N4, ZrO2, TiN nanopowder). Addition of the second phase to silicon nitride improves material strength.  相似文献   

18.
A simple and low-cost technique combining freeze drying and oxidation sintering is explored to prepare Si3N4 ceramics with high porosity and complex shape. The effects of sintering temperature and time on the phase composition, microstructure, porosity, pore size and dielectric constant of the porous Si3N4 ceramics are studied. Due to the variations of phase composition and microstructure, the porous Si3N4 ceramics sintered at different temperature possess characteristic in flexural strength. The porous Si3N4 ceramics sintered at 1,300 °C for 2–3 h have the highest flexural strength of 71–74 MPa. The changes of porosity and composition have much effect on the dielectric constant of porous Si3N4 ceramics. Because of the high porosity and SiO2 volume fraction, the porous Si3N4 ceramics sintered at 1,300 °C for 2–3 h possess low dielectric constant of 3.4–3.6 and small pore size of 0.9 μm. The porous Si3N4 ceramics are good structural/functional and promising electromagnetic wave transparent material.  相似文献   

19.
Y-TZP Al2O3 specimens (2.5 mol% Y2O3-ZrO2 and 5 to 30 wt% Al2 03) were prepared from coprecipitated powders and their mechanical properties were studied. The addition of alumina to Y-TZP improves the attainable density of the materials after sintering at 1500° C and reduces the degradation of their densities due to porosity formation when the materials are sintered above 1500° C. Near theoretical density could be achieved for most of the samples after HIPing at 1500° C for 1/2 h at 200 M Pa pressure. The fracture strength of the HIPed specimens was in the range 2.0 to 2.4 GPa and the stress intensity factor was in the range 3.5 to 6.0 MPa m1/2. The mechanical strength of the materials was not degraded seriously after autoclaving in water at 175° C for 24 h. The surface layer of transformed monoclinic zirconia was less than 70 m thick even after autoclaving at 175° C for 5 days.  相似文献   

20.
A highly refractory glass in the system Al2O3-SiO2-P2O5-Y2O3 has been designed and produced such that, upon heating, an essentially fully crystalline glass—ceramic evolves containing mullite (nominally 3Al2O3·2SiO2) and xenotime (YPO4) as the final principal phases. Phase separation in this glass occurred during cooling from the melt and continued during annealing. XPS of the Al 2p, P 2p and the Y 3d electrons revealed that the average chemical environment of each of these elements is measurably different in the annealed glass and in the completely crystallized material. This indicates that the compositions of the separated glass phases are very different from those of the crystal phases which form from them. Additional rearrangement of the glass structure was observed at 1173 K. Extensive formation of mullite was initially detected at 1223 K and was followed by the crystallization of xenotime and the transient compounds of Y4Al2O9, Y2Si2O7, AlPO4 and YP5O14. The optimum crystal nucleation and crystallization temperatures of 1173 and 1473 K, respectively, were determined from DTA, XRD, SEM and TEM studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号