共查询到6条相似文献,搜索用时 0 毫秒
1.
Sabine Zamberger Tomasz Wojcik Jürgen Klarner Gerald Klösch Herbert Schifferl Ernst Kozeschnik 《国际钢铁研究》2013,84(1):20-30
The present work describes the analysis of carbo‐nitride precipitation kinetics in tempered martensite of Nb–Ti‐microalloyed steel with a carbon content of 0.3 wt%. Based on the information obtained from transmission electron microscopy and scanning electron microscopy, a computational simulation procedure is developed within the software package MatCalc, which is capable of describing the experimental results in terms of the number density, composition, and type of precipitate phases. No explicit fitting parameters are used in the computer simulation. The input data is entirely based on independent physical or microstructural parameters. To determine the chemical composition and type of precipitates, energy dispersive X‐ray spectroscopy and selected area electron diffraction are utilized. The simulation results and the experimentally obtained information are in good agreement. 相似文献
2.
Two creep resistant steels, P91 and X20, were tempered for 17520 h at 650 °C or 8760 h at 750 °C to study the growth and redistribution of carbide precipitates in martensite. On specimens annealed for a different time, yield stress at room temperature and accelerated creep rate at 580 °C were determined. With increasing yield stress in the range from 350 to 650 MPa the accelerated creep rate decreased continuously by about 2 orders of magnitude from 8·10?7 s?1 to 5·10?9 s?1. For equal yield stress, the creep rate was slightly lower for the steel P91 than for the steel X20. 相似文献
3.
In this study two different heat treatments were conducted on an X 37 Cr Mo V 5‐1 hot‐work tool steel, resulting either in a tempered fully martensitic matrix or a matrix almost consisting of tempered bainite. Short‐term creep tests were performed at a high stress level of 800 MPa and at temperatures in the range from 450 °C to 500 °C. Creep specimens consisting of a tempered fully martensitic microstructure exhibited a three times longer creep‐to‐rupture time, than those consisting of a tempered almost bainitic microstructure. Microstructural investigations of creep specimens were performed by transmission electron microscopy. Results of these investigations revealed that due to a lower cooling rate, which is necessary to form bainite, the tempered bainitic microstructure consists of large former bainitic plates, whereas tempered martensite shows fine former martensitic laths. Tempered bainite also exhibits a higher number density of large M3C, M7C3 and MC carbides than tempered martensite. Small M2C carbides appear in both microstructures in the same quantity, however, nanometer‐sized MC carbides could only be found in tempered martensite. Thus poor short‐term creep behavior of the tempered almost bainitic microstructure can be explained by the lesser amount of strengthening relevant precipitates, a smaller size‐effect due to distance of bainitic interfaces as well as lower solid solution hardening. 相似文献
4.
5.
A composite consisting of 5 vol% MgO‐partially stabilized ZrO2 particles (Mg‐PSZ) and a TRIP‐steel‐matrix (CrNiMn steel; transformation induced plasticity) was produced through Spark Plasma Sintering. The processed material was tested under compression at various nominal strain rates (4 × 10?4 s?1; 10?3 s?1; 1 s?1, 102 s?1). Both, the pure steel and the composite showed a considerable plasticity and high strength due to the very fine grained steel matrix. The addition of 5 vol% ceramic particles led to a rise in the offset yield strength of 60 MPa till 90 MPa according to the applied strain rate. Up to a strain rate of 1 s?1, no change in offset yield strength was measured. A strain‐rate of 100 s?1 leads to a rise in the offset yield strength of approx. 100 MPa. Both, the ceramic and an increase in the strain rate implicate to an early generation of microdeterioration. Limited by the interfacial strength of steel and Mg‐PSZ, failure occurs early at the interfaces, which is shown in a decrease in the work hardening. During the compression, especially at higher strain‐rates, adiabatic heating occurred and counteracted to the martensitic transformation. 相似文献